
Appears in Proceedings of the 4th International Workshop on Economics-Driven Software Engineering Research (EDSER 2002), Orlando, Florida

Macro and Micro Perspectives on Strategic Software
Quality Assurance in Resource Constrained Environments

Tao Xie David Notkin
Department of Computer Science & Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350 USA
+1 206 616 1844

{taoxie, notkin}@cs.washington.edu

ABSTRACT
Software quality assurance (SQA) plays a key role in
software development process. Software quality assurance
methods include testing, inspection, formal method
(program verification, model checking, etc.), static code
analysis, and runtime verification, etc. A disciplined
approach to meeting benefit, cost, schedule, and quality
constraints is in need. In this paper, we propose two
perspectives (macro and micro) on strategic software
quality assurance in resource constrained environments.
We present a survey and discuss a variety of research
opportunities and challenges with these two perspectives.
Finally we present our research work on test case
prioritization based on boundary value coverage to tackle
strategic SQA problems with these two perspectives.

Keywords: Software Quality Assurance, Economic Driven
Software Engineering, Regression testing, Test Case
Prioritization

1. INTRODUCTION
The activities of software quality assurance (SQA) are
different from other activities in a software development
process in that the investment on different SQA methods is
to achieve the same goal, making software products high
quality, or finding and fixing bugs in software products
more specifically. However, in other activities during
software development process, usually only one method or
approach is adopted to attain the goal, such as those
activities in phases of design and implementation, etc. One
of the reasons why people usually do not choose only one
SQA method to achieve high software quality is that so far
few or even no single SQA method can assure satisfactory
quality alone. In early days, software testing and inspection
were commonly used as SQA methods. Owe to recent

advances on theory and programming languages, static
defect detection and model checking techniques have been
used in SQA activities more extensively. Osterweil et al.
[23] suggest that different SQA techniques and tools could
be integrated to provide value considerably beyond what
the separate techniques can provide. Gunter et al. [13]
suggest developing methods for combining the strengths of
different methods for analyzing software system to
improve its quality. In this paper, we propose two
perspectives in strategic software quality assurance. The
macro perspective focuses on the integration of different
SQA methods. One of the issues is resource distribution
among different SQA methods and is related to following
question:

• What SQA methods are to be adopted? How to
distribute the constrained resources on these
methods?

The micro perspective focuses on the strategic resource
distribution within certain SQA method and is related to
following question:

• How to distribute the constrained resources on the
artifacts involved on certain SQA method?

2. MACRO PERSPECTIVE
Provided with various SQA methods to choose, the SQA
people have to decide on which ones shall be used in their
SQA process and how to distribute the constrained
resources among them. An exemplary resource distribution
on different SQA methods is showed in Figure 1.

The cost-effective analysis of each SQA method needs to
be conducted to support the decisions on them. One
direction to improve cost-effectiveness of a SQA method is
to reduce the cost while keeping reasonable effectiveness.
For example, generally formal methods require upfront
expensive investments. Wong et al. suggested some ways
of tailoring formal methods to suit a constrained
environment [29].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDSER-4 ’02, May 21, 2002, Orlando, Florida.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

66

Testing

Static Defect Detection

Specification Model
Checking

Insepction

Runtime
Monitoring

...

The o
metho
reason
might
domai
test ca
testing
exhau
Howe
genera
violate
effecti
of pot

Above
a part
relativ
might
the les
constr
compl
examp
faults
greatly
metho
where
high,
traditi

Anoth
metho
can pr
differe
ways
compl
separa
effecti
practit
differe
effecti
et al.
integr

analysis techniques could be used to assist theorem
proving, and when a theorem prover failed to establish a
proof obligation, the information about how the prover
failed could be used to generate test cases.

The integration of different SQA methods can be
categorized as loose integration and tight integration based
on the extent of coupling between these SQA methods.

2.1 Loose Integration
The final artifact or product of a SQA method is the one
that is produced by that method to directly aid the fault
detection. For example, the final artifacts of testing
methods are a list of executed test cases that detect the

Figure 1. Exemplary Resource Distribution on
Different SQA Methods
ther direction to improve cost-effectiveness of a SQA
d is to increase its effectiveness while keeping the
able cost. Effectiveness of different SQA methods

 be dependent on specific applications or application
ns, including the types of contained faults. Although
se generation in testing method can be fault-based,
 method is generally not fault-specific. Theoretically

stive testing can detect all faults in the program.
ver, model checking or static defect detection is
lly property-specific or specific to those faults that
 particular properties. Therefore, investigating the
veness of these SQA methods needs to take the types
ential faults in the system into consideration.

 two directions are to improve cost-effectiveness for
icular SQA method. If some SQA methods have
ely good cost-effectiveness for our target system, we
 invest the constrained resources on them rather than
s cost-effective ones. Indeed, in practice, distributing
ained resources among SQA methods is more
icated than that being affected by other factors. For
le, besides the cost-effectiveness, the severity cost of
that are detectable by certain SQA methods can
 affect the decision whether or not to use that

d. Chandra et al. claim that for application domains
 the cost of just a handful of high-severity faults is
model checking is a valuable complement to

onal SQA methods [6].

er way is to improve the interaction of different SQA
ds to gain more value than the separate techniques
ovide, which is focused by this section. Traditionally,
nt SQA methods have been viewed as competing
of achieving high quality software, perhaps

ementing each other, but essentially
te. Integration of different SQA methods in an
ve way has recently caught the attention of
ioners and researchers. The effective integration of
nt SQA methods can provide better cost-
veness than performing them independently. Gunter
 [13] exemplified a scenario of SQA method
ation that the result of type checking or other static

faults together with their execution results. By
incorporating the fault localization technique, the final
artifacts of testing methods can include the locations of the
detected faults in the code. The final artifacts of
specification model checking method are a list of violated
properties and their counter-examples in specification.

The intermediate artifact or by product of a SQA method is
the one that is used by that method to produce the final
artifacts. For example, the intermediate artifacts of the
specification model checking method include the symbolic
model that is feed to the model checker. The intermediate
artifacts of testing method include the test case execution
trace.

In loose integration of different SQA methods, one SQA
method makes use of the intermediate artifacts produced by
another SQA method.

2.1.1 Dynamic Analysis and Static Defect Detection
Daikon [10], an invariant detection tool, can discover likely
specification, e.g. invariants, from program executions by
instrumenting the target program to trace the variables,
running the instrumented program over a test suite, and
inferring invariants over the instrumented values.
Dynamically detected invariants can annotate a program or
provide goals for static verification. These invariants, the
intermediate artifacts of testing, are fed to the static checker
ESC-Java [22]. If the static checker finds the conditions
under which the invariants collected from correct runs are
invalidated, the potential faults are reported.

2.1.2 Model Checking and Testing
Gunter et al. [13] claim that success for specifications will
come from providing tangible benefits, such as test oracles
and test generation, not just the potential for verification.
Reusing specification among different SQA methods is a
loose integration of them commonly used by practitioners
and researchers.

By modeling the negation of test purpose or coverage
criteria as a temporal formula, the test case generation
problem is formulated as finding counterexamples during

67

the model checking [9][14]. Another similar approach is to
model the negation of certain properties to be covered and
generate the counterexamples as test cases [12].
Application of mutation analysis in model checking can
generate counterexamples as test cases to distinguish the
variants from original specification [1].

TestEra [20] models the correctness criteria for the
program in Alloy, a first-order relational language, and
specifies abstraction and concretization translations
between instances of Alloy models and Java data
structures. It produces concrete Java inputs as test case
counterexamples to violated correctness criteria by using
the Alloy Constraint Analyzer [16].

VeriSoft [6] implements model checking algorithms for
systematically testing concurrent reactive software and has
been used in a large industrial telecommunication system.
Its applications show that complementing model checking
with traditional testing can significantly contribute to
increasing the confidence that a software system is ready to
ship.

2.1.3 Theorem Proving and Testing
Given a formal proof of the correctness of an abstract
model of a system to be developed, testing data can be
extracted to test concrete implementations of that
system. Carrying out a correctness proof often entails
detailed analysis of the input domain of a program,
partitioning that domain into subdomains for which a
uniform argument is used to establish correctness. This
partitioning by-product of the proof process can be used as
the basis for extracting test cases to be used for validating
the implementations of the specification [19][5]. On the
other hand, automated testing is used to gain confidence in
the likely correctness of the software, prior to investing in
proofs [26].

2.2 Tight Integration
In tight integration of different SQA methods, one SQA
method makes use of the final artifacts or products
produced by another SQA method. Fewer progresses have
been made in tight integration of different SQA methods
than in loose integration. There exist some challenging
research opportunities in this area.

The final artifacts of a SQA method, generally in form of a
list of reported faults, can be categorized as follows:

• Actual faults, those reported faults that are
actually faults in the system.

• False positives, those reported faults that are
actually not faults in the system.

In addition, false negatives are those faults that are left
undetected in the system by this SQA method.

Generally testing methods might have relatively fewer false
positives but other SQA methods might report certain
number of false positives caused by the information loss
due to abstraction or other unsound static analysis
techniques. Sometimes it is beyond the capability of human
inspection to identify those warnings to be false positives
or actual faults. Those unresolved warnings are called
uncertain faults. One potential research direction to tackle
this problem is to generate and run those test cases to
exercise the dangerous conditions, e.g. certain paths or
certain variable values, under which these uncertain faults
are expected to expose. However, there are two challenges:
the first is to associate the faults with the dangerous
conditions; the second one is to generate or identify the test
cases based on these dangerous conditions. Another
direction is to monitor those conditions that the uncertain
faults are related to by using runtime verification
techniques.
When resources are constrained, it is reasonably practical
to select or prioritize the test cases in test case pool that
possibly exercise those dangerous conditions related to
uncertain faults. Another coarse-grained approach with less
complexity is to select or prioritize those test cases that
exercise those structural entities, e.g. statements or
functions, where those uncertain faults are reported.
By estimating the false negatives left in system by certain
SQA method based on the reported faults and
characteristics of the system, SQA people can schedule
another SQA method to complement to detect these false
negatives.

3. MICRO PERSPECTIVE
Different from macro perspective, which focuses on the
interactions between SQA methods, micro perspective
focuses on the resource distribution within certain SQA
method. More specifically, it concerns the distribution of
constrained resources on the artifacts on certain SQA
method. These artifacts can be modules in modular static
defect detection techniques, subsystems of a specification
in model checking techniques, components in runtime
verification techniques, and test cases in testing techniques.

3.1 Selection Techniques
When resources are constrained and cannot afford to invest
on all artifacts in the system, selection techniques are used
to select those artifacts to invest based on certain criteria.
The criteria might take importance, mission-criticality,
cost, and fault potential into account when the artifacts are
functional units in the system. Similar selection techniques
are used in software product line scoping process to define
the scope of product line [8] or in requirement scoping
process to define the scope of requirement to fulfill [17].

68

For artifacts of test cases or test suites in testing techniques,
the criteria might comprise rate of fault detection, test case
execution cost, structural coverage, and data coverage, etc.

3.2 Prioritization Techniques
Since the artifact selection is done under conditions of
uncertainty and incomplete knowledge, the scope of
selection might be dynamically adjusted after selection
decision is made. For example, when the cost of the SQA
method is underestimated, there are not enough resources
to spend on all selected artifacts. When the cost of the SQA
method is overestimated, there are still some available
resources left for SQA people to decide which artifacts of
unselected ones are to be spent.

Even when the scope of selection is not changed along the
way, it remains advantageous to detect the faults as early as
possible. Therefore, prioritization techniques are used to
complement selection techniques in addressing these issues
induced by uncertainty.

In software development process, Microsoft [7] breaks
down large products into a priority-ordered set of
manageable product features. This provides a mechanism
for incorporating customer inputs, setting priorities,
completing the most important parts first, and changing or
cutting less important features. Various approaches to
prioritize requirements are proposed by researchers [4][18].

Test case prioritization techniques sort the test cases for
regression testing in certain order such that those test cases
that are more important measured in some way are
scheduled to run earlier in regression testing [28][24].
Integration of test case selection and prioritization are used
in practice by prioritizing the test cases selected in test case
selection process [28][25]. Most existing test case
prioritization techniques are based on structural coverage,
e.g. function coverage or statement coverage, etc.

4. TEST CASE PRIORITIZATION BASED
ON BOUNDARY VALUE COVERAGE
Since a large number of faults tend to occur at boundaries
of the input domain, testing boundary values has been
extensively discussed in software testing handbooks
[21][2][3]. Most past research work in boundary value
coverage has generally focused on test case generation
instead of test case assessment, which can be used in
regression testing, e.g. test case selection or test case
prioritization, due in part to lack of tool support to collect
boundary value coverage information without a priori
specification.

Since very few programs in practice are equipped with
specification or assertion-like annotations containing the
predicates to infer boundary values, we propose a new
approach of applying boundary value coverage in test case
prioritization without requiring a priori specification. We

use an invariant detection tool called Daikon to
dynamically infer specification, e.g. invariants,
preconditions and post-conditions for each function [10].

Daikon discovers likely specification, e.g. invariants, from
program executions by instrumenting the target program to
trace the variables, running the instrumented program over
a test suite, and inferring invariants over the instrumented
values. Daikon infers invariants at specific program points
such as loop heads, entries and exits of functions. The
invariant detector is provided with variable traces that
contain the values of all variables in scope at specific
program points for each test case execution. We develop a
boundary predicate extractor to extract the boundary
predicates for specific program points from invariants
produced by Daikon. Boundary value coverage calculator
is developed to calculate the boundary value coverage for
certain test case based on the boundary predicates and the
variable trace for that test case. An overview of above
procedures is showed in Figure 2.

Invariants

Instrumented
program

Original
program

Test suite

RunInstrument

Data trace
database

Detect
invariants

Extract
BP

Boundary
Predicates

Calculate
BVC

BVC

Based o
collected
reward v
these rew
small-size
researche
originally
results sh
informati
of structu
tackling
perspecti
loose inte
and testin

5. CON
The mac
integratio
distributi
the strat
method.
research
perspecti
based on
strategic

69

Figure 2. An overview of Daikon-based

boundary value coverage technique.
n the boundary value coverage information
 for each test case execution, we calculate the
alue for each test case and order them based on
ard values. An experiment is conducted on seven
 siemens programs created by Siemens

rs [15] and one medium-size space program
 created by Vokolos and Frankl [27]. Our initial
ow that incorporating boundary value coverage

on in prioritization can improve the effectiveness
ral coverage techniques in average. This work is
strategic SQA prioritization problem with micro
ve. At the same time, this approach is a form of
gration of Daikon, a dynamic analysis approach,
g approach with macro perspective.

CLUSIONS
ro perspective on strategic SQA focuses on the
n of different SQA methods and the resource
on among them. The micro perspective focuses on
egic resource distribution within certain SQA
This paper presents a survey and proposes the

directions and challenges with these two
ves. Our initial work on test case prioritization
 boundary value coverage is an attempt to tackle
SQA problems with these two perspectives.

6. ACKNOWLEDGMENTS
Discussions with students in the Software Engineering
Seminar, CSE 590n, at the University of Washington,
Winter 2002, were helpful and inspiring. This work was
supported in part by the National Science Foundation under
grant ITR 0086003.

7. REFERENCES
[1] P. Ammann , P. E. Black, and W. Majurski. Using model

checking to generate tests from specifications. In
Proceedings of ICFEM, pages 46-54, December 1998.

[2] B. Beizer, Software Testing Techniques, 2nd edition, Van
Nostrand Reinhold, New York, USA.

[3] B. Beizer, Black-Box Testing: Techniques for Functional
Testing of Software and Systems. Wiley, New York, 1995

[4] B. Boehm, H. In. Identifying quality-requirement conflicts,
IEEE Software, Volume: 13 Issue: 2, March 1996, Page(s):
25 –35

[5] S. Burton, J. Clark, A. Galloway and J. McDermid.
Automated V&V for High Integrity Systems: A Targeted
Formal Methods Approach. In the Proceedings of the 5th
NASA Langley Formal Methods Workshop. June 2000.

[6] S. Chandra, P. Godefroid and C. Palm Software Model
Checking in Practice: An Industrial Case Study. Proceedings
of ICSE'2002, Orlando, May 2002.

[7] M. A. Cusumano , R. W. Selby, How Microsoft builds
software, Communications of the ACM, v.40 n.6, p.53-61,
June 1997

[8] J-M. DeBaud and K. Schmid. A Systematic Approach to
Derive the Scope of Software Product Lines. Proceedings of
ICSE'1999, Los Angeles, CA, USA, pp. 34–43, 1999.

[9] A. Engels, L. Feijs, S. Mauw: Test Generation for Intelligent
Networks using Model Checking. In 3rd International
Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, Enschede, the Netherlands, April 1997,

[10] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on Software
Engineering, 27(2): 1-25, Feb. 2001.

[11] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In International Symposium of
Formal Methods Europe 2001, Lecture Notes in Computer
Science, v2021, pages 500-517. Springer, March 2001.

[12] A. Gargantini, and C. Heitmeyer, Using Model Checking to
Generate Tests from Requirements Specifications,
ESEC/FSE '99, Toulose, France, September 1999, Lecture
Notes in Computer Science, Vol. 1687.

[13] C. Gunter , J. Mitchell , D. Notkin, Strategic directions in
software engineering and programming languages, ACM
Computing Surveys (CSUR), v.28 n.4, p.727-737, Dec. 1996

[14] H.S. Hong, I. Lee, O. Sokolsky and S.D. Cha. Automatic
Test Generation from Statecharts Using Model Checking,

Proceedings of Workshop on Formal Approaches to Testing
of Software, August 2001, pp. 15-30.

[15] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings of
the 16th ICSE, pages 191-200, May 1994

[16] D. Jackson, I. Schechter, I. Shlyahter: Alcoa: the alloy
constraint analyzer. In proceedings of ICSE 2000: p.730-733

[17] J. Karlsson and K. Ryan. Supporting the Selection of
Software Requirements. In 8th International Workshop on
Software Specification and Design, 1996, pp. 146-149.

[18] J. Karlsson and K. Ryan. Prioritizing Requirements Using a
Cost-Value Approach. IEEE Software. September/October
issue, 1997, pp. 67-74.

[19] S. Maharaj. Towards a Method of Test Case Extraction from
Correctness Proofs. Proceedings of the 14th International
Workshop on Algebraic Development Techniques, Bonas,
France, November 1999, pp 45-46

[20] D. Marinov and S. Khurshid. TestEra: A Novel Framework
for Testing Java Programs. 16th IEEE ASE 2001, San Diego,
CA. Nov 2001.

[21] G. J. Myers, The Art of Software Testing, Wiley, New York,
USA, 1979

[22] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating Daikon
and ESC/Java. Proceedings of First Workshop on Runtime
Verification, July 23, 2001, Paris, France.

[23] L. J. Osterweil et al. Strategic directions in software quality.
ACM Computing Surveys, (4):738-750, Dec. 1996.

[24] G. Rothermel, R. Untch, C. Chu and M. J. Harrold. Test case
prioritization: an empirical study. In Proceedings of ICSM,
pages 179-188, Aug. 1999

[25] A. Srivastava and J. Thiagarajan, Effectively Prioritizing
Tests in Development Environment, MSR-TR-2002-15, Feb.
2002.

[26] N. Tracey, J. Clark, K. Mander and J. McDermid. Integrating
Automated Testing with Exception Freeness Proofs for
Safety Critical Systems. In the Proceedings of 4th Australian
Workshop on Safety Critical Systems and Software.
Australian Computer Society. November 1999.

[27] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the
textual differencing regression testing technique. In
Proceedings of International Conference on Software
Maintenance, pages 44-53, 1998.

[28] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In
Proceedings of the 8th International Symposium on Software
Reliability Engineering, pages 230-238, Nov. 1997.

[29] A. Wong and M. Chechik. Formal Methods When Money is
Tight. In Proceedings of the First Workshop On Economics-
Driven Software Engineering Research, Los Angeles,
California, May 1999.

70

	INTRODUCTION
	MACRO PERSPECTIVE
	Loose Integration
	Dynamic Analysis and Static Defect Detection
	Model Checking and Testing
	Theorem Proving and Testing

	Tight Integration

	MICRO PERSPECTIVE
	Selection Techniques
	Prioritization Techniques

	TEST CASE PRIORITIZATION BASED ON BOUNDARY VALUE COVERAGE
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

