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ABSTRACT 
Software quality assurance (SQA) plays a key role in 
software development process. Software quality assurance 
methods include testing, inspection, formal method 
(program verification, model checking, etc.), static code 
analysis, and runtime verification, etc. A disciplined 
approach to meeting benefit, cost, schedule, and quality 
constraints is in need. In this paper, we propose two 
perspectives (macro and micro) on strategic software 
quality assurance in resource constrained environments. 
We present a survey and discuss a variety of research 
opportunities and challenges with these two perspectives. 
Finally we present our research work on test case 
prioritization based on boundary value coverage to tackle 
strategic SQA problems with these two perspectives. 

Keywords: Software Quality Assurance, Economic Driven 
Software Engineering, Regression testing, Test Case 
Prioritization 

1. INTRODUCTION 
The activities of software quality assurance (SQA) are 
different from other activities in a software development 
process in that the investment on different SQA methods is 
to achieve the same goal, making software products high 
quality, or finding and fixing bugs in software products 
more specifically. However, in other activities during 
software development process, usually only one method or 
approach is adopted to attain the goal, such as those 
activities in phases of design and implementation, etc. One 
of the reasons why people usually do not choose only one 
SQA method to achieve high software quality is that so far 
few or even no single SQA method can assure satisfactory 
quality alone. In early days, software testing and inspection 
were commonly used as SQA methods. Owe to recent 

advances on theory and programming languages, static 
defect detection and model checking techniques have been 
used in SQA activities more extensively. Osterweil et al. 
[23] suggest that different SQA techniques and tools could 
be integrated to provide value considerably beyond what 
the separate techniques can provide. Gunter et al. [13] 
suggest developing methods for combining the strengths of 
different methods for analyzing software system to 
improve its quality. In this paper, we propose two 
perspectives in strategic software quality assurance. The 
macro perspective focuses on the integration of different 
SQA methods. One of the issues is resource distribution 
among different SQA methods and is related to following 
question: 

• What SQA methods are to be adopted? How to 
distribute the constrained resources on these 
methods? 

The micro perspective focuses on the strategic resource 
distribution within certain SQA method and is related to 
following question: 

• How to distribute the constrained resources on the 
artifacts involved on certain SQA method? 

2. MACRO PERSPECTIVE 
Provided with various SQA methods to choose, the SQA 
people have to decide on which ones shall be used in their 
SQA process and how to distribute the constrained 
resources among them. An exemplary resource distribution 
on different SQA methods is showed in Figure 1. 

The cost-effective analysis of each SQA method needs to 
be conducted to support the decisions on them. One 
direction to improve cost-effectiveness of a SQA method is 
to reduce the cost while keeping reasonable effectiveness. 
For example, generally formal methods require upfront 
expensive investments. Wong et al. suggested some ways 
of tailoring formal methods to suit a constrained 
environment [29].  
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analysis techniques could be used to assist theorem 
proving, and when a theorem prover failed to establish a 
proof obligation, the information about how the prover 
failed could be used to generate test cases.  

The integration of different SQA methods can be 
categorized as loose integration and tight integration based 
on the extent of coupling between these SQA methods. 

2.1 Loose Integration 
The final artifact or product of a SQA method is the one 
that is produced by that method to directly aid the fault 
detection. For example, the final artifacts of testing 
methods are a list of executed test cases that detect the 
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faults together with their execution results. By 
incorporating the fault localization technique, the final 
artifacts of testing methods can include the locations of the 
detected faults in the code. The final artifacts of 
specification model checking method are a list of violated 
properties and their counter-examples in specification.  

The intermediate artifact or by product of a SQA method is 
the one that is used by that method to produce the final 
artifacts. For example, the intermediate artifacts of the 
specification model checking method include the symbolic 
model that is feed to the model checker. The intermediate 
artifacts of testing method include the test case execution 
trace. 

In loose integration of different SQA methods, one SQA 
method makes use of the intermediate artifacts produced by 
another SQA method. 

2.1.1 Dynamic Analysis and Static Defect Detection 
Daikon [10], an invariant detection tool, can discover likely 
specification, e.g. invariants, from program executions by 
instrumenting the target program to trace the variables, 
running the instrumented program over a test suite, and 
inferring invariants over the instrumented values. 
Dynamically detected invariants can annotate a program or 
provide goals for static verification. These invariants, the 
intermediate artifacts of testing, are fed to the static checker 
ESC-Java [22]. If the static checker finds the conditions 
under which the invariants collected from correct runs are 
invalidated, the potential faults are reported. 

2.1.2 Model Checking and Testing 
Gunter et al. [13] claim that success for specifications will 
come from providing tangible benefits, such as test oracles 
and test generation, not just the potential for verification. 
Reusing specification among different SQA methods is a 
loose integration of them commonly used by practitioners 
and researchers. 

By modeling the negation of test purpose or coverage 
criteria as a temporal formula, the test case generation 
problem is formulated as finding counterexamples during 
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the model checking [9][14]. Another similar approach is to 
model the negation of certain properties to be covered and 
generate the counterexamples as test cases [12]. 
Application of mutation analysis in model checking can 
generate counterexamples as test cases to distinguish the 
variants from original specification [1]. 

TestEra [20] models the correctness criteria for the 
program in Alloy, a first-order relational language, and 
specifies abstraction and concretization translations 
between instances of Alloy models and Java data 
structures. It produces concrete Java inputs as test case 
counterexamples to violated correctness criteria by using 
the Alloy Constraint Analyzer [16]. 

VeriSoft [6] implements model checking algorithms for 
systematically testing concurrent reactive software and has 
been used in a large industrial telecommunication system. 
Its applications show that complementing model checking 
with traditional testing can significantly contribute to 
increasing the confidence that a software system is ready to 
ship. 

2.1.3 Theorem Proving and Testing 
Given a formal proof of the correctness of an abstract 
model of a system to be developed, testing data can be 
extracted to test concrete implementations of that 
system. Carrying out a correctness proof often entails 
detailed analysis of the input domain of a program, 
partitioning that domain into subdomains for which a 
uniform argument is used to establish correctness. This 
partitioning by-product of the proof process can be used as 
the basis for extracting test cases to be used for validating 
the implementations of the specification [19][5]. On the 
other hand, automated testing is used to gain confidence in 
the likely correctness of the software, prior to investing in 
proofs [26]. 

2.2 Tight Integration 
In tight integration of different SQA methods, one SQA 
method makes use of the final artifacts or products 
produced by another SQA method. Fewer progresses have 
been made in tight integration of different SQA methods 
than in loose integration. There exist some challenging 
research opportunities in this area. 

The final artifacts of a SQA method, generally in form of a 
list of reported faults, can be categorized as follows: 

• Actual faults, those reported faults that are 
actually faults in the system.  

• False positives, those reported faults that are 
actually not faults in the system.  

In addition, false negatives are those faults that are left 
undetected in the system by this SQA method. 

Generally testing methods might have relatively fewer false 
positives but other SQA methods might report certain 
number of false positives caused by the information loss 
due to abstraction or other unsound static analysis 
techniques. Sometimes it is beyond the capability of human 
inspection to identify those warnings to be false positives 
or actual faults. Those unresolved warnings are called 
uncertain faults. One potential research direction to tackle 
this problem is to generate and run those test cases to 
exercise the dangerous conditions, e.g. certain paths or 
certain variable values, under which these uncertain faults 
are expected to expose. However, there are two challenges: 
the first is to associate the faults with the dangerous 
conditions; the second one is to generate or identify the test 
cases based on these dangerous conditions. Another 
direction is to monitor those conditions that the uncertain 
faults are related to by using runtime verification 
techniques. 
When resources are constrained, it is reasonably practical 
to select or prioritize the test cases in test case pool that 
possibly exercise those dangerous conditions related to 
uncertain faults. Another coarse-grained approach with less 
complexity is to select or prioritize those test cases that 
exercise those structural entities, e.g. statements or 
functions, where those uncertain faults are reported. 
By estimating the false negatives left in system by certain 
SQA method based on the reported faults and 
characteristics of the system, SQA people can schedule 
another SQA method to complement to detect these false 
negatives. 

3. MICRO PERSPECTIVE 
Different from macro perspective, which focuses on the 
interactions between SQA methods, micro perspective 
focuses on the resource distribution within certain SQA 
method. More specifically, it concerns the distribution of 
constrained resources on the artifacts on certain SQA 
method. These artifacts can be modules in modular static 
defect detection techniques, subsystems of a specification 
in model checking techniques, components in runtime 
verification techniques, and test cases in testing techniques.  

3.1 Selection Techniques 
When resources are constrained and cannot afford to invest 
on all artifacts in the system, selection techniques are used 
to select those artifacts to invest based on certain criteria. 
The criteria might take importance, mission-criticality, 
cost, and fault potential into account when the artifacts are 
functional units in the system. Similar selection techniques 
are used in software product line scoping process to define 
the scope of product line [8] or in requirement scoping 
process to define the scope of requirement to fulfill [17]. 
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For artifacts of test cases or test suites in testing techniques, 
the criteria might comprise rate of fault detection, test case 
execution cost, structural coverage, and data coverage, etc. 

3.2 Prioritization Techniques 
Since the artifact selection is done under conditions of 
uncertainty and incomplete knowledge, the scope of 
selection might be dynamically adjusted after selection 
decision is made. For example, when the cost of the SQA 
method is underestimated, there are not enough resources 
to spend on all selected artifacts. When the cost of the SQA 
method is overestimated, there are still some available 
resources left for SQA people to decide which artifacts of 
unselected ones are to be spent. 

Even when the scope of selection is not changed along the 
way, it remains advantageous to detect the faults as early as 
possible. Therefore, prioritization techniques are used to 
complement selection techniques in addressing these issues 
induced by uncertainty. 

In software development process, Microsoft [7] breaks 
down large products into a priority-ordered set of 
manageable product features. This provides a mechanism 
for incorporating customer inputs, setting priorities, 
completing the most important parts first, and changing or 
cutting less important features. Various approaches to 
prioritize requirements are proposed by researchers [4][18]. 

Test case prioritization techniques sort the test cases for 
regression testing in certain order such that those test cases 
that are more important measured in some way are 
scheduled to run earlier in regression testing [28][24]. 
Integration of test case selection and prioritization are used 
in practice by prioritizing the test cases selected in test case 
selection process [28][25]. Most existing test case 
prioritization techniques are based on structural coverage, 
e.g. function coverage or statement coverage, etc. 

4. TEST CASE PRIORITIZATION BASED 
ON BOUNDARY VALUE COVERAGE 
Since a large number of faults tend to occur at boundaries 
of the input domain, testing boundary values has been 
extensively discussed in software testing handbooks 
[21][2][3]. Most past research work in boundary value 
coverage has generally focused on test case generation 
instead of test case assessment, which can be used in 
regression testing, e.g. test case selection or test case 
prioritization, due in part to lack of tool support to collect 
boundary value coverage information without a priori 
specification. 

Since very few programs in practice are equipped with 
specification or assertion-like annotations containing the 
predicates to infer boundary values, we propose a new 
approach of applying boundary value coverage in test case 
prioritization without requiring a priori specification. We 

use an invariant detection tool called Daikon to 
dynamically infer specification, e.g. invariants, 
preconditions and post-conditions for each function [10]. 

Daikon discovers likely specification, e.g. invariants, from 
program executions by instrumenting the target program to 
trace the variables, running the instrumented program over 
a test suite, and inferring invariants over the instrumented 
values. Daikon infers invariants at specific program points 
such as loop heads, entries and exits of functions. The 
invariant detector is provided with variable traces that 
contain the values of all variables in scope at specific 
program points for each test case execution. We develop a 
boundary predicate extractor to extract the boundary 
predicates for specific program points from invariants 
produced by Daikon. Boundary value coverage calculator 
is developed to calculate the boundary value coverage for 
certain test case based on the boundary predicates and the 
variable trace for that test case. An overview of above 
procedures is showed in Figure 2. 
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Figure 2. An overview of Daikon-based
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