Symstra: A Framework for Generating Object-Oriented
Unit Tests using Symbolic Execution

Tao Xie', Darko Marino¥, Wolfram Schulté, David Notkint

! Dept. of Computer Science & Engineering, Univ. of Washing®eattle, WA 98195, USA
2 Department of Computer Science, University of lllinoispana-Champaign, IL 61801, USA
3 Microsoft Research, One Microsoft Way, Redmond, WA 98053AU
{t aoxi e, not ki n}@s. washi ngt on. edu, mari nov@s. ui uc. edu,
schul te@n crosoft.com

Abstract. Object-oriented unit tests consist of sequences of methadtations.
Behavior of an invocation depends on the method’s argunerdsthe state of
the receiver at the beginning of the invocation. Correspaly generating unit
tests involves two tasks: generating method sequencedsuifchtelevant receiver-
object states and generating relevant method argumenis.paper proposes
Symstra, a framework that achieves both test generatids tasing symbolic
execution of method sequences with symbolic argumentsp@per defines sym-
bolic states of object-oriented programs and novel corapasi of states. Given a
set of methods from the class under test and a bound on thinlehgequences,
Symstra systematically explores the object-state spatheotlass and prunes
this exploration based on the state comparisons. Expetahesults show that
Symstra generates unit tests that achieve higher branarage faster than the
existing test-generation techniques based on concreteotharguments.

1 Introduction

Object-oriented unit tests are programs that test clagsash test case consists of a
fixed sequence of method invocations with fixed argumentsekiglores a particular
aspect of the behavior of the class under test. Unit testbereming an important
component of software development. The Extreme Progragdistipline [5], for in-
stance, leverages unit tests to permit continuous andatedrcode changes. Unlike
in traditional testing, it is developers (not testers) whadtevtests for every aspect of
the classes they develop. However, manual test generatitimeé consuming, and so
typical unit test suites cover only some aspects of the class

Since unit tests are gaining importance, many companiegmnowde tools, frame-
works, and services around unit tests. Tools range fromiaped test frameworks,
such as JUnit [18] or Visual Studio’s new team server [25hitomatic unit-test gen-
eration, such as Parasoft’s Jtest [27]. However, existstdgeneration tools typically
do not provide guarantees about the generated unit-tésssin particular, the suites
rarely satisfy the branch-coverage test criterion [6]alehe a stronger criterion, such
as the bounded intra-method path coverage [3] of the cladmrtest. We present an ap-
proach that uses symbolic execution to exhaustively egfiounded method sequences
of the class under test and to generate tests that achidvétdagch and intra-method
path coverage for complex data structures such as contaipgmentations.

1.1 Background

Generating test sequences involves two tasks: generatitigoeh sequences that build
relevant receiver-object state and generating relevatiiadearguments. Researchers
have addressed this problem several times. Most tools gengsst sequences using
concrete representations. A popular approach is to usertjs,amdom generation;
this approach is embodied in tools such as Jtest [27] (a coniah¢ool for Java) or
JCrasher [13] and Eclat [26] (two research prototypes fea)JaRandom tests gener-
ated by these tools often execute the same sequences [3diendt covering (do not
cover all sequences). The AsmLT model-based testing t& 18] uses concrete-state
space-exploration techniques [12] to generate coverirthodesequences. But AsmLT
requires the user to carefully choose sufficiently largeccete domains for method
arguments and the right abstraction functions to guarahteeovering. Tools such as
Korat [8] are able to generate non-isomorphic object gréiphitscan be used for testing,
but they do not generate covering test sequences.

King proposed in the 70’s to use symbolic execution for tegéind verification [20].
Because of the advances in constraint solvers, this teganiggently regained the at-
tention for test generation. For example, the BZ-TT tookusanstraint solving to de-
rive method sequences from B specifications [22]. Howeber,B specifications are
not object-oriented. Khurshid et al. [19, 33] proposed agoraach for generating tests
for Java classes based on symbolic execution. They shoviltbitgeneration based
on symbolic execution generates tests faster than theiehub@cking of method se-
quences with concrete arguments. This is expected: symiegresentations describe
not only single states, but sets of states, and when apfgiceyombolic representations
canyield large improvements, witnessed for example by sfimmodel checking [24].
The approach of Khurshid et al. [19, 33], however, genetiieseceiver-object states,
similar to Korat [8], only as object graphs, not through noetlsequences. Moreover, it
requires the user to provide specially constructed classients [23], which effectively
describe an over-approximation of the set of reachablecobjaphs.

Symbolic execution is the foundation of static code anal{®bls. These tools typ-
ically do not generate test data, but automatically veiifypde properties of programs.
These properties often allow merging symbolic states tieat from different execution
paths. However, for test generation, states have to be kpptate, since different tests
should be used for different paths. Recently, tools such.adV§2,4] and Blast [7,17]
were adapted for test generation. However, neither of theamdeal with complex data
structures, which are the focus of this paper.

1.2 Contributions

This paper makes the following contributions.

Symbolic Sequence Exploration:We propose Symstra, a framework that uses
symbolic execution to generate method sequences. Wheitalplp, Symstra uses an
exhaustive exploration of method sequences with symbali@kles for primitive-type
arguments. (We also discuss how Symstra can handle reéetgpe arguments.) Each
symbolic argument represents a set of all possible conwsdtees for the argument.

Symstra uses symbolic execution to operate on symboliessthait include symbolic
variables.

Symbolic State ComparisonWe present novel techniques for comparison of sym-
bolic states of object-oriented programs. Our techniqulesyé&Symstra to prune the
exploration of the object state and thus generate teser fagthout compromising the
exhaustiveness of the exploration. In particular, the ngipreserves the intra-method
path coverage of the generated test suites.

Implementation: We describe an implementation of a test-generation tojon-
stra. Our implementation handles dynamically allocatedcstires, method pre- and
post-conditions, and symbolic data. Our current implermgon does not support con-
currency, but such support can be added by reimplementings®a in a Java model
checker, such as Java Pathfinder [32] or Bogor [29].

Evaluation: We evaluate Symstra on seven subjects, most of which areleamp
data structures. The experimental results show that Sgrgstierates tests faster than
the existing test-generation techniques based on exlawstploration of sequences
with concrete method arguments [15, 16, 33, 34]. Furtheergthe same time for gen-
eration, Symstra can generate tests that achieve bettectbmverage than the ex-
isting techniques. Finally, Symstra works on ordinary Javalementations and does
not require the user to provide the additional methods reduby some other ap-
proaches [8, 33].

2 Example

This section illustrates how Symstra explores method sempseand generates tests.
Figure 1 shows a binary search tree clBS$ that implements a set of integers. Each
tree has a pointer to the root node. Each node has an elentpbanters to the left
and right children. The class also implements the standdrj®rations: nsert adds
an element, if not already in the tree, to a leadnove deletes an element, if in the
tree, replacing it with the smallest larger child if necegsandcont ai ns checks if an
elementis in the tree. The class also has a default constrhétt creates an empty tree.
Some tools such as Jtest [27] or JCrasher [13] test a classi®rating random
sequences of methods; fB8T, they could for example generate the following tests:

Test 1: Test 2:
BST t1 = new BST(); BST t2 = new BST();
tl.insert(0); t2.insert(2147483647);
tl.insert(-1); t2.renove(2147483647);
t1.renove(0); t2.insert(-2147483648);

Each test has a method sequence on the objects of the ctasSest 1 creates a tree
t 1, invokes twoi nsert methods on it, and then omenove. Typically, checking the
correctness (of outputs) for such tests relies on desigoelmyract annotations trans-
lated into run-time assertions [10, 27] or on model-bassetirtg [16]. If there are no
annotations or models, the tools check only the code robastrexecute the tests and
check for uncaught exceptions [13].

Some other tools [15, 16, 33, 34] can exhaustively expldmnathod sequences up
to a given length. Such exploration raises two questiorjsnftat arguments to use for

class BST inplenents Set {
Node root;
static class Node {
int val ue;
Node |eft;
Node ri ght;

void insert(int value) { ... }
void renove(int value) { ... }
bool contains(int value) { ... }

Fig. 1. A set implemented as a binary search tree

method calls, and (2) how to determine equivalent tests3d taols typically require
the user to provide a sufficiently good set of concrete vdlesach argument, or based
on the argumenttype, use a set of default values that mayrelés&nt behaviors. These
tools check equivalence of test sequences by comparingdtes shat the sequences
build; the comparison uses either user-provided functmrdefaults, such as identity
or isomorphism. This generation is similar to explicittstmodel checking [12].
Symstra also explores all sequences, but usinmgbolic valuegor primitive-type
arguments in method calls. Such exploration relieves Symsers from the burden
of providing concrete values: Symstra determines the aglievalues during the execu-
tion. Having symbolic arguments necessitates symbolicugi@n [20]. It operates on a
symbolic state that consists of two parts: (Jamstraint known as thgath condition
that must hold for the execution to reach a certain point &)d (heap that contains
symbolic variables. When the symbolic execution encogrddaranch, it explores both
outcomes, appropriately adding the branch condition onétgation to the constraint.
Symbolic state exploration in Symstra is conceptually kimod symbolic model check-
ing [24].
Let us consider the symbolic execution of the following satpe:
BST t = new BST();
t.insert(zy);
t.insert(z2);

t.insert(zs);
t.remove(za);

This sequence has four method calls whose arguments areoBgmériablesr,, x2,
x3, andz4. While an execution of a sequence with concrete argumentiupges one
state, symbolic execution of a sequence with symbolic asgusican produce several
states, thus resulting in an execution tree. Figure 2 shopearteof the execution tree
for this example. Each state has a heap and a constraint tisathold for that heap to
be created. The constructor first creates an empty tree. igherdsert then adds the
elementr; to the tree.

The second nsert produces states;, sy, andss: if 1 = 2, the tree does not
change, and ifc; > x; (or z3 < x1), z2 is added in the right (or left) subtree. Note
that the symbolic states ands, aresyntacticallydifferent:s, has the constraintr ue,
while sy, hasz; = z2. However, these two symbolic states aeznanticallyequivalent:
they can be instantiated into the same set of concrete hgapihg to z; andz;
concrete values that satisfy the constraints; sincdoes not appear in the heapsin
the constraint iy, is “irrelevant”. Instead of state equivalence, it suffiaesheck state
subsumptionwe say that, subsumes, because the set of concrete heaps,of a

S3| xi>% 56 X1 >Xo A Sg| x>xA

z o o
—_ = 5 > >
@ \‘:X/ % @ \D @ @ \El
§ Sp| true 2 Sp| true Sy| xa=x On On
- O) - ()

S5 X1 <Xo S7| xa<xn

3
O \ ©©
g

Fig. 2. A part of the symbolic execution tree

subset of the set of concrete heapsffHence, Symstra does not need to explore
after it has already exploregh. Symstra detects this by checking that the implication
of constraintse; = zo = true holds. Our current Symstra implementation uses the
Omega library [28] and CVC Lite [11] to check the validity &ftimplication.

The thirdi nsert again produces several symbolic states. Symstra apples t
only on s3 andss (and not onsy). In particular, we focus org and s, two of the
symbolic states that these executions produce. These atassire syntactically dif-
ferent, but semantically equivalent: we can exchange thiahlasz, andzs to obtain
the same symbolic state. Symstra detects this by checkatggdtands; areisomor-
phic(Section 3.2). Symstra finally appliesnove. Note again that one of the symbolic
states producedg, is subsumed by a previously explored state,

This example has illustrated how Symstra would explore sylimlexecution for one
particular sequence. Symstra actually exhaustively egplthe symbolic execution tree
for all sequences up to a given length, pruning the explandtased on subsumption.
These sequences consists of all specified methods of thewrder test, i.ei,nsert,
renove, andcont ai ns for BST.

After producing a symbolic state Symstra can generate a specific test with con-
crete arguments to produce a concrete heap®ymstra generates the test by traversing
the shortest path from the root of the symbolic executioa tees and outputting the
method calls that it encounters. To generate concrete agisfor these calls, Symstra
uses a constraint solver. Our current implementation dse$OOC solver [31]. For
example, the tests that it generatesdpands; are:

Test for s3: Test for sb:

BST t3 = new BST(); BST t5 = new BST();
t3.insert(-999999); t5.insert(-1000000);
t3.insert(-1000000); t5.insert(-999999);

A realistic suite of unit tests contains more sequencestéisitthe interplay between
i nsert,renove, andcont ai ns methods. Section 4 summarizes such suites.

3 Framework and Implementation

We next formalize the notions introduced informally in thewous section. We first
describe how Symstra represents symbolic states. Symesisaivem for two purposes:
(1) during the symbolic execution of method invocations édfor representing the
states between method invocations in method sequenceshéiNetesent how Sym-
stra compares states based on the isomorphism of heaps plichiion of constraints.
We next present the symbolic execution of method invocatiwve finally present the
systematic exploration of method sequences and how Syos#gsymbolic state com-
parison to prune this exploration. We present the Symstianique itself as well as our
current implementation.

3.1 Symbolic State

Symbolic states differ from concrete states, on which thelgrogram executions op-
erate, in that symbolic states contain symbolic expressiath symbolic variables and
also constraints on these variables [20]. Symstra usestlweving symbolic expres-
sions and constraints:

- A symbolic variable is a symbolic expression. Each symbadidable has a type,
which is one of the Java types. For example,andx, may be each a symbolic
variable (and thus also a symbolic expression) of fiyye.

- A Java constant of some type is a symbolic expression ofypat t

- For each Java operaterwith n operandsy symbolic expressions of the appropri-
ate operand types connected withare a symbolic expression of the result type.
For examplex; + z2 andx; > xo are expressions of typent andbool ean,
respectively.

- Symbolic expressions of tyfmol ean are constraints.

Let P be the set of all primitive values, including integarsue, f al se, etc. LetV
be a set of infinite number of symbolic variables of each tymla a set of all possible
expressions formed fromi and P. Given a valuation for the variables,; V' — P, we
extend it to evaluate all expressiopsU — P as follows:n(p) = p forallp € P, and
n(Quy,...,u,) = eval®,n(u1),...,n(uy,)) forall u,...,u, € U and operations
©®, where eval evaluates operations on primitive values a@aegrto the Java semantics.

In object-oriented programs, a concrete state consistglobal heap and a stack (in
general one stack for each thread, but we consider here ioglheshreaded programs),
as well as several other parts, such as metadata for clas$@sagram counters. Sym-
bolic states in Symstra have the same parts as concrets, $iatéhe heaps and stacks
in symbolic states can contain symbolic expressions; eafdilly, each symbolic state
has a constraint. We focus on the symbolic state betweerohetrguences.

Definition 1. A symbolic statéC, H) is a pair of a constraint and a symbolic heap.

We view each heap as a graph: nodes represent objects (aasngiimitive val-
ues and symbolic expressions) and edges represent objdst fietO be some set of
objects whose fields form a sét Each object has a field that represents its class. We
consider arrays as objects whose fields are labelled witbg@n) array indexes and
point to the array elements.

Definition 2. A symbolic heap is an edge-labelled grafh F), whereE C O x F x
(O U {nul| } UU) such that for each fielg of eacho € O exactly onglo, f,0') € E.
A concrete heap has only concrete valugss O U {nul | } U P.

3.2 Heap Isomorphism

We define heap isomorphism as graph isomorphism based orbijeckon [8]. We are
interested in detecting isomorphic heaps because theydesglivalent method behav-
iors; hence, it suffices to explore only one representativ@ feach isomorphism parti-
tion. Nodes in symbolic heaps contain symbolic variablesys first define a renaming
of symbolic variables. Given a bijectian: V' — V, we extend it to the whole : U —

U as follows:7(p) = p forallp € P, and7(Ouq, ..., u,) = O7(u1),...,7(uy) for
all uy,...,u, € U and operations). We further extend- to substitute free variables
in formulas with bound variables, avoiding capture as usual

Definition 3. Two heaps01, E;1) and(O-, E>) areisomorphidff there are bijections
p: 01 — Oyandr : V — V such that:

By = {{p(0), f.p(d"))|(0, f,0') € Er,0 € O1} U {(p(0), f.nul 1)[{o, f,nul I) € Ex} U
{<p(0)v faT(O/)>|<07 fv 0/> € Elvo/ € U}

Note that the definition allows only object identities andndyplic variables to vary:
two isomorphic heaps have the same fields for all objects gndl€up to renaming)
symbolic expressions for all primitive fields.

The state exploration in Symstra focuses on the state ofaevkjects and does
not consider the entire heap; in this context, the state olgacto consists of the
values of the fields 06 and fields of all objectseachablefrom o. From a program
heap(O, E) and a tuplgvy, . . ., v,) of pointers and symbolic expressionse O UU,
where0 < i < n, Symstra constructs moted head34] (O, E;,) that has a unique
root objectr € Oy: Symstra first creates the he&p’, E’), whereO’ = O U {r},

r ¢ O,andE’ = EU{(r,i,v;)|0 < i < n}, and then create®)y, F}) as the subgraph
of (O’, E') such thaD;, C O’ is the set of all objects reachable fromvithin E’ and
En = {{o, f,0) € E'lo € Op}.

We can efficiently check isomorphism of rooted heaps, evengh for general
graphs it is unknown whether checking isomorphism can be dopolynomial time.
Symestralinearizesheaps into integer sequences such that checking heap igbisior
corresponds to checking sequence equality. Figure 3 shenlgearization algorithm.
It starts from the root and traverses the heap depth firstslgas a unique identifier to
each object, keeps this mappingoibj s and reuses it for objects that appear in cycles.
It also assigns a unique identifier to each symbolic varidaleps this mapping war s
and reuses it for variables that appear several times indap.h

A similar linearization is used to represent concrete h@apsdel checking [1, 30,
32]. This paper extends the linearization from our previeask [34] with | i nSynExp
that handles symbolic expressions; this improves on theoagp of Khurshid et al. [19,
33] that does not use any comparison for symbolic expresslois easy to show that
our linearization normalizes rooted heaps.

Map<Obj ect,int> objs; // maps objects to unique ids
Map<SynVar,int> vars; // maps synbolic variables to unique ids

int[] linearize(Qbject root, Heap <O E>) {
objs = new Map(); vars = new Map();
return lin(root, <O E>>;

}

int[] lin(Qoject root, Heap <O E>) {
if (objs.containsKey(root))
return singl etonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o>in E });
foreach (<root, f, o> in fields) {
if (isSynbolicExpression(o0)) seq.append(linSynExp(o));
elseif (o == null) seq.append(0);
el se seq. append(lin(o, <O E>)); // pointer to an object

return seq;

}

int[] linSymExp(SynExp e) {
if (isSynvar(e)) {
if (!vars.containsKey(e))
vars. put (e, vars.size() + 1);
return singl etonSequence(vars.get(e));
} elseif (isPrimtive(e)) return uniqueRepresentation(e);
else { // operation with operands
int[] seq = singletonSequence(uni queRepresentation(e.getOperation()));
foreach (SynExp e in e.getOperands())
seq. append(|inSynExp(e’));
return seq;

}
}

Fig. 3. Pseudo-code of linearization for a symbolic rooted heap

Theorem 1. Two rooted heap§01, E;) (with rootr;) and(O2, E») (with rootrs) are
isomorphic iffl i neari ze(ry, (O1, E1))=1ineari ze(rz, (O, E3)).

3.3 State Subsumption

We define symbolic state subsumption based on the concrapes tigat each symbolic
state represents. Symstra uses state subsumption to peueegdioration. To instantiate
a symbolic heap into a concrete heap, we replace the symimriiables in the heap
with primitive values that satisfy the constraint in the $oftic state.

Definition 4. AninstantiatiorZ ((C, H)) of a symbolic statéC, H) is a set of concrete
heapsH’ such that there exists a valuatign: V' — P for whichn(C) is true andH’
is the evaluatiom(H) of all expressions it according ton.

Definition 5. A symbolic statéC, H;) subsumeanother symbolic statéCs, Hs), in
notation (C1, H1) 2 (Cs, Hs), iff for each concrete heafl;, € Z((Cs, Ha)), there
exists a concrete heafi; € Z((Cy, Hy)) such thatH] and H}, are isomorphic.

Symestra uses the algorithm in Figure 4 to check if the comgtcd (Co, H), af-
ter suitable renaming, implies the constrainf{6f, H;). Note that the implication is

bool ean checkSubsunes(Constraint Cl, Heap Hi,
Constraint C2, Heap H2) {
int[] il = linearize(root(Hl), HL);
Map<SynVar,int> vl = vars; // at the end of previous linearization
Set <SynVar> nl = variables(Cl) - vl.keys(); // variables not in the heap
int[] i2 = linearize(root(H2), H2);
Map<SynVar,int> v2 = vars; // at the end of previous linearization
Set <SynVar> n2 = variabl es(C2) - v2.keys(); // variables not in the heap
if (il <>i2) return false;
Renanming 7 = v2 o vi~! // conpose v2 and the inverse of vl
return checkValidity(7(3ne. C2) = 3Iny. C1);

Fig. 4. Pseudo-code of subsumption checking for symbolic states

universally quantified over the (renamed) symbolic vagatihat appear in the heaps
and existentially quantified over the symbolic variablex tio not appear in the heaps
(more precisely only ir{;, because the existential quantifier foy in the premise of
the implication becomes a universal quantifier for the whmlglication). We can show
that this algorithm is a conservative approximation of suygtion.

Theorem 2. If checkSubsunes({C1, H1), (Ca, Ha)) then(Cy, Hy) subsume&Cs, Ho).

Symstra gains the power and inherits the limitations froen tdchnique used to
check the implication on the (renamed) constraints. TheectiSymstra prototype uses
the Omega library [28], which provides a complete decisimtpdure for Presburger
arithmetic, and CVC Lite [11], an automatic theorem prowdrich has decision pro-
cedures for several types of constraints, including re@ldr arithmetic, uninterpreted
functions, arrays, etc. Since these checks can consumeoétiote, Symstra further
uses the following conservative approximation: if freeiables@n,. C,) are not a
subset of free-variables(3n,. C5)), returnf al se without checking the implication.

3.4 Symbolic Execution

We next discuss the symbolic execution of one method in a odesequence. Each
method execution starts with one symbolic state and pradseeeral symbolic states.
We use the notation,,, ((C, H)) to denote the set(C1, H1), ..., (Cy, H,)} of states
that the symbolic execution, of the methodn produces starting from the sta€, H).

Following the typical symbolic executions [20, 33], Synastymbolically explores
both branches aff statements, modifying the constraint with a conjunct theseds to
hold for the execution to take a certain branch. In this cantbe constraint is called
path condition because it is a conjunction of conditions that need to hotdHe ex-
ecution to take a certain path and reach the current addresssymbolic execution
directly explores every path of the method under consid®rathe common issue in
the symbolic execution is that the number of paths may beiief{or too large as it
grows exponentially with the number of branches) and thi§(C, H)) may be (prac-
tically) unbounded. In such cases, Symstra can use theasthisét of heuristics to
explore only some of the paths [9, 33].

The current Symstra prototype implements the executiqmest@ symbolic states
by rewriting the code to operate on symbolic expressionghEy Symstra implements
the exploration of different branches by re-executing thethod from the beginning
for each path, without storing any intermediate stateseNloat Symstra re-executes
only one method (for different paths), not the whole metheglence. (This effectively
produces a depth-first exploration of paths within one meithdnile the exploration of
states between methods is breadth-first as explained iretttesaction.)

Our Symstra prototype also implements the standard otinizs for symbolic
execution. First, Symstra simplifies the constraints thatiilds at branches; specifi-
cally, before conjoining the path condition so farand the current branch condition
C’ (whereC’ is a condition from amf or its negation), Symstra checks if some of the
conjuncts inC' impliesC’; if so, Symstra does not conjo@f. Second, Symstra checks
if the constraintC&&C" is unsatisfiable; if so, Symstra stops the current path of sym
bolic execution, because it is an infeasible path. The cuSgmstra prototype can use
the Simplify [14] theorem prover or the Omega library [28]dioeck unsatisfiability.
We have found that Omega is faster, but it handles only linalrmetic constraints.

Given a symbolic state at the entry of a method execution,sBynuses symbolic
execution to achieve structural coverage within the metbedause symbolic execu-
tion systematically explores all feasible paths withintirethod. If the user of Symstra
is interested in only the tests that achieve new branch egegrour Symstra proto-
type monitors the branch coverage during symbolic exenwditd selects a symbolic
execution for concrete test generation (Section 3.6) whersymbolic execution cov-
ers a new branch. The Symstra prototype can also be extendsdlécting symbolic
executions that achieve new bounded intra-method pathrageg3].

3.5 Symbolic State Exploration

We next present the symbolic state space for method seguandehow Symstra sys-
tematically explores this state space. The state spacétoakall states that are reach-
able with the symbolic execution of all possible method sages for the class under
test. LetC and M be a set of the constructor and non-constructor method$sodlss.
Each method sequence starts with a constructor ffdimlowed by several methods
from M. We denote withZ¢_,, the state space for these sequences. The initial symbolic
state issp = (true, {}): the constraint is true, and the heap is empty. The statespac
includes the states that the symbolic execution produgghéoconstructors and meth-
ods:(J.ce 0e(s0) € Yem andVs € Xe - Ue s om(s) € e m. As usual [12],
Xe, m is the least fixed point of these equations. The state spaggigslly infinite.

The current Symstra prototype exhaustively explores athedipart of the symbolic
state space using a breadth-first search. The inputs to &yarst a set of constructor
C and non-constructor methodd of the class under test and a bound on the length of
sequences. Symstra maintains a set of explored states andesging queue of states.
Symestra processes the queue in a breadth-first mannerei tale state and symbol-
ically executes each method under test (constructor atefyebing of the sequence
and a non-constructor after that) for each path on this.da&ry such execution yields
a new symbolic state. Symstra adds the new state to the qaetwether exploration
only if it is not subsumed by an already explored state froarstst. Otherwise, Symstra

prunes the exploration: the new symbolic state represetysacsubset of the concrete
heaps that some explored symbolic state represents; itssttmecessary to explore the
new state further. Pruning based on subsumption plays thokein enabling Symstra
to explore large state spaces.

3.6 Concrete Test Generation

During the symbolic state exploration, Symstra also buslalscific concrete tests that
lead to the explored states. Whenever Symstra finishes asdigrekecution of a method
that generates a new symbolic staté H), it also generates symbolic testThis test
consists of the constrain and the shortest method sequence that reagfie#).
(Symstra associates such a method sequence with each systht# and dynamically
updates it during execution). Symstra then instantiatgsrdoslic test using the POOC
constraint solver [31] to solve the constraihbver the symbolic arguments for methods
in the sequence. Based on the produced solution, Symsiimnslzioncrete arguments
for the sequence leading {6, H). Symstra exports such concrete test sequences into
a JUnit test class [18]. It also exports the constréinassociated with the test as a
comment for the test in the JUnit test class.

At the class-loading time, Symstra instruments each biiaggboint of the class
under test for measuring branch coverage at the bytecoelk lezlso instruments each
method of the class to capture uncaught exceptions at ranfitme user can configure
Symstra to select only those generated tests that increasetbcoverage or throw new
uncaught exceptions.

4 Evaluation

This section presents our evaluation of Symstra for expipmethod sequences and
generating tests. We compare Symstra with Rostra [34], mwigus framework that
generates tests using bounded-exhaustive exploratioagefesices with concrete ar-
guments. We have developed Symstra on top of Rostra, sohthatoimparison does
not give an unfair advantage to Symstra because of unrelatg@vements. In these
experiments, we have used the Simplify [14] theorem provexhieck unsatisfiability
of path conditions, the Omega library [28] to check implicas, and the POOC con-
straint solver [31] to solve constraints. We have perforthedexperiments on a Linux
machine with a Pentium IV 2.8 GHz processor using Sun’s J&aKR 1.4.2 JVM with
512 MB allocated memory.

Table 1 lists the seven Java classes that we use in the exgmgsinThe first six
classes were previously used in evaluating Rostra [34] thedast five classes were
used in evaluating Korat [8]. The columns of the table shosvdlass name, the public
methods under test (that the generated sequences corsisbimie private methods
invoked by the public methods, the number of non-comment;llank lines of code
in all those methods, and the number of branches for eackdubj

We use Symstra and Rostra to generate test sequences witiVupéthods. Rostra
also requires concrete values for arguments, so we set gegd/wifferent arguments
(the integers from 0 taV — 1) for methods under test. Table 2 shows the comparison

class methods under test some private methods| #ncnb #
lines | branchesg
IntStack push,pop - 30 9
UBStack push,pop - 59 13
BinSearchTree| insert,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70
delete unionNodes,decrease
LinkedList add,remove,removeLast addBefore 253 12
TreeMap put,remove fixAfterins 370 170
fixAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown| 71 29

Table 1. Experimental subjects

between Symstra and Rostra. We raiigdrom five to eight. (ForN < 5, both Sym-
stra and Rostra generate tests really fast, usually witlsiouple of seconds, but those
tests do not have good quality.) We tabulate the time to geadhe tests (measured in
seconds, Columns 3 and 7), the number of explored symbadlicamncrete object states
(Columns 4 and 8), the number of generated tests (Columnsd ®)amand the branch
coveragé achieved by the generated tests (Columns 6 and 10). In CeslGvand 9,
we report the total number of generated tests and, in thenfheages, the cumulative
number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout faheteration of the
breadth-first exploration: when an iteration exceeds tmewites, the exhaustive ex-
ploration of Symstra or Rostra is stopped and the systermrepaxwith the next itera-
tion. We use a “*” mark for each entry where the test-genergpirocess timed out; the
state exploration of these entries is no longer exhaudfiteuse a “—" mark for each
entry where Symstra or Rostra exceeded the memory limit.

The results indicate that Symstra generates method seegienthe same length
N often much faster than Rostra, thus enabling Symstra torgenenger method se-
guences within a given time limit. Both Symstra and Rostfisie® the same branch
coverage for method sequences of the same lengtidowever, Symstra achieves
higher coverage faster. It also takes less memory and cash f@generation in more
cases than Rostra. These results are due to the fact thaspadiolic state, which
Symstra explores at once, actually describes a set of deratates, which Rostra must
explore one by one. Rostra often exceeds the memory liminwe= 7 or N = 8,
which is often not enough to guarantee full branch coverage.

5 Discussion and Future Work

Specifications.Symstra uses specifications, i.e., method pre- and poslitemms and
class invariants, written in the Java Modelling LanguadéL(J[21]. The JML tool-
set transforms these constructs into run-time asserti@ighrow JML-specific excep-

1 \We measure the branch coverage at the bytecode level dimngtate exploration of both
Symstra and Rostra, and calculate the total number of bezralso at the bytecode level.

Symstra Rostra

| class | time][stateg testd %cov time| stateg testd %cov
UBStack 0.05] 22| 43(5)] 923 2.08] 656] 1950(6) 92.3
4.38 30 67(6)] 100.0 31.83 3235 13734(7) 100.0

7.20 41 91(6)| 100.0 | *269.68|*10735|*54176(7)[*100.0

10.64 55| 124(6) 100.0 - - - -

IntStack 0.23 12 18(3)] 55.6 12.76| 4836 5766(4) 55.6

0.42] 16| 24(4) 66.7 - - - -
050 20| 32(5) 88.9 | *689.02*30080|*52480(5) *66.7
0.62] 24| 40(6) 100.0 - - - -
7.06| 65| 350(15) 97.1 4.80] 188| 1460(16) 97.1
2853 197| 1274(16) 100.0| 23.05 731| 7188(17) 100.0
136.84 626 4706(16) 100.0 - - - -
*317.76|*1458| *8696(16) *100.0 - - - -
139 6| 40(13) 843 4.97] 380 1320(12) 84.3

BinSearchTree

BinomialHeap

2.55 7 66(13) 84.3 50.921 3036/12168(12) 84.3
3.80 8] 86(15)] 90.0 - - - -
8.85 9] 157(16) 91.4 - - - -
LinkedList 0.56 6 25(5)| 100.0 32.61] 3906/ 8591(6) 100.0
0.66 7 33(5)] 100.0 | *412.00] *9331|*20215(6)[*100.0
0.78 8 42(5)| 100.0 - - - -
0.95 9 52(5)| 100.0 - - - -
TreeMap 3.20] 16| 114(29) 76.5 3.52 72| 560(31) 76.5
7.78 28| 260(35) 82.9 12.42 185| 2076(37) 82.9
19.45 59| 572(37) 84.1| 41.89 537| 6580(39) 84.1
63.21 111 1486(37) 84.1 - - - -
HeapArray 1.36 14 36(9)] 75.9 3.75 664| 1296(10) 75.9

250 20| 65(11) 89.7 - : - :
478 35| 109(13) 100.0 - : - -
11.200 54| 220(13) 100.0 - - - -

00| N o 01| 00| N | O1| 00| N| | U1f 00| N[| U] 0o| N | 01| oo N| | 1| O] N| o *if| Z

Table 2. Experimental results of test generation using Symstra asir&

tions when violated. Generating method sequences for rdethith JML specifications
amounts to generatirlggal method sequences that satisfy pre-conditions and class in-
variants, i.e., do not throw exceptions for these construétduring the exploration
Symestra finds a method sequence that violates a post-comditiinvariant, Symstra
has discovered a bug; Symstra can be configured to genecdditéestis and continue or
stop test generation. If a class implementation is corr@btr@spect to its specification,
paths that throw post-condition or invariant exceptiorssth be infeasible.

Symstra operates on the bytecode level. It can perforrmtesfithe specifications
woven into method bytecode by the JML tool-set or by simitanl$. Note that in this
setting Symstra essentially uses black-box testing [3&kfore only those symbolic
states that are produced by method executions that satisfggnditions and class in-
variants; conditions that appear in specifications simpbppgate into the constraints
associated with a symbolic state explored by Symstra. Usintbolic execution, Sym-
stra thus obtains the generation of legal test sequenceféy'.

Performance.Based on state subsumption, our current Symstra protoigeres one
or more symbolic states that have the isomorphic heap. Wetplevaluate an approach
that explores exactly ongionsymbolic state for each isomorphic heap. We can create
a union state using a disjunction of the constraints foryattisolic states with the iso-
morphic heap. Each union state subsumes all the symbolasstath the isomorphic
heap, and thus exploring only union states can further rethue number of explored
states without compromising the exhaustiveness of theoexjpdn. (Subsumption is a
special case of union; & = C1, thenC; v Cs simplifies toC' .)

Symstra enables exploring longer method sequences thaadheiques based on
concrete arguments. However, users may want to have anratipto of even longer
sequences to achieve some test purpose. In such casesthearsapply several tech-
niques that trade the guarantee of the intra-method pattrage for longer sequences.
For example, the user may provide abstraction functionstétes [23], as used for in-
stance in the AsmLT generation tool [15], or binary methad<bmparing states (e.g.
equal s), as used for instance in Rostra. Symstra can then genesdtethat instead
of subsumption use these user-provided functions for coimgpatate. This leads to a
potential loss of intra-method path coverage but enabksrfauser-controlled explo-
ration. To explore longer sequences, Symstra can alsoarsgsstl heuristics [9, 33] for
selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. &le, it
cannot precisely handle array indexes that are symbolialas. This situation occurs
in some classes, such Bssj Set andHashMap used previously in evaluating Ros-
tra [34]. One solution is to combine symbolic execution wigixhaustive or random)
exploration based on concrete arguments: a static analgsikl determine which ar-
guments can be symbolically executed, and for the rest,saewould provide a set of
concrete values [15].

So far we have discussed only methods that take primitiveraegits. We cannot
directly transform non-primitive arguments into symbolariables of primitive type.
However, we can use the standard approach for generatingniitive arguments:
generate them also as sequences of method calls that magiveburequire more se-
quences of method calls, but eventually boil down to methibdshave only primitive
values (omul 1). (Note that this also handles mutually recursive clay}S€rasher [13]
and Eclat [26] take a similar approach. Another solutionoigransform these argu-
ments into reference-type symbolic variables and enhdmeesymbolic execution to
support heap operations on symbolic references. Conchgéets representing these
variables can be generated by solving the constraints dtidgsthe instance fields us-
ing reflection. However, the collected constraints arerofiet sufficient to generate
legal instances, in which case an additional object inmaigarequired.

6 Conclusion

We have proposed Symstra, a novel framework that uses syareba@cution to gen-
erate a small number of method sequences that reach highhbaand intra-method
path coverage for complex data structures. Symstra extialyséxplores method se-
guences with symbolic arguments up to a given length. It@suhe exploration based

on state subsumption; this pruning speeds up the explatatithout compromising its
exhaustiveness. We have implemented a test-generatibiotdymstra and evaluated
it on seven subjects, most of which are complex data strestdrhe results show that
Symstra generates tests faster than the existing testagametechniques based on ex-
haustive exploration of sequences with concrete methathaegts, and given the same
time limit, Symstra can generate tests that achieve bettarch coverage than these
existing techniques.

Acknowledgments

We thank Corina Pasareanu and Willem Visser for their contsnen our implemen-
tation of subsumption checking, help in using symbolic e%ien, and valuable feed-
back on an earlier version of this paper. We also thank Waligarieskamp, Sarfraz
Khurshid, Viktor Kuncak, and Nikolai Tillmann for useful stiussions on this work
and anonymous reviewers for the comments on a previousoven$ithis paper. Darko
Marinov would like to thank his advisor, Martin Rinard, fargporting part of this work

done at MIT. This work was funded in part by NSF grant CCROQ®bE We also ac-
knowledge support through the High Dependability Compunogram from NASA

Ames cooperative agreement NCC-2-1298.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xiag: A model checker for
concurrent software. IRroc. 6th International Conference on Computer Aided \tfon,
pages 484-487, 2004.

2. T. Ball. A theory of predicate-complete test coverage gederation. Technical Report
MSR-TR-2004-28, Microsoft Research, Redmond, WA, Aprid20

3. T. Ball and J. R. Larus. Using paths to measure, explaid,esnthance program behavior.
IEEE Computer33(7):57-65, 2000.

4. T.Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auatatic predicate abstraction of C
programs. IrProc. the ACM SIGPLAN 2001 Conference on Programming Lagegsesign
and Implementatigrpages 203-213, 2001.

5. K. Beck. Extreme programming explainedddison-Wesley, 2000.

6. B. Beizer.Software Testing Techniqudsiternational Thomson Computer Press, 1990.

7. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and Rjwhdar. Generating tests from
counterexamples. IRroc. 26th International Conference on Software Enginagrpages
326-335, 2004.

8. C.Boyapati, S. Khurshid, and D. Marinov. Korat: autordagssting based on Java predicates.
In Proc. International Symposium on Software Testing and ysigipages 123-133, 2002.

9. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyaefinding dynamic program-
ming errors.Softw. Pract. Exper30(7):775-802, 2000.

10. Y. Cheon and G. T. Leavens. A simple and practical appréaainit testing: The JML
and JUnit way. InProc. 16th European Conference Object-Oriented Programgnpages
231-255, June 2002.

11. S.B. Clark W. Barrett. CVC Lite: A new implementation bétcooperating validity checker.
In Proc. 16th International Conference on Computer Aidedfiéaiion pages 515-518, July
2004.

12.

13.

14.

15.

16.

17.
18.
19.

20.
21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

E. M. Clarke, O. Grumberg, and D. A. Pelédodel CheckingThe MIT Press, Cambridge,
MA, 1999.

C. Csallner and Y. Smaragdakis. JCrasher: an autonoatisiness tester for Javdoftware:
Practice and Experience4:1025-1050, 2004.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theopeaver for program checking.
Technical Report HPL-2003-148, HP Laboratories, Palo AItA, 2003.

Foundations of Software Engineering, Microsoft ResteaiThe AsmL test generator tool.
http://research. mcrosoft.com fse/asnm /doc/ AsnmLTester. htnl.

W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. g&aing finite state machines
from abstract state machines. Rmoc. International Symposium on Software Testing and
Analysis pages 112-122, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. v@o# verification with BLAST.
In Proc. 10th SPIN Workshop on Software Model Checkiragjes 235-239, 2003.

JUnit, 2003ht t p: / / www. j uni t. org.

S. Khurshid, C. S. Pasareanu, and W. Visser. Generaigetbolic execution for model
checking and testing. IRroc. 9th International Conference on Tools and AlgoritHorsthe
Construction and Analysis of Systerpages 553-568, April 2003.

J. C. King. Symbolic execution and program testi@gmmun. ACM19(7):385-394, 1976.
G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary desifJML: A behavioral inter-
face specification language for Java. Technical Report FTR@®8Department of Computer
Science, lowa State University, June 1998.

B. Legeard, F. Peureux, and M. Utting. A comparison of tHeC/B and TTF/Z test-
generation methods. Proc. 2nd International Z and B Conferengages 309-329, January
2002.

B. Liskov and J. GuttagProgram Development in Java: Abstraction, Specificatiamj a
Object-Oriented DesignAddison-Wesley, 2000.

K. L. McMillan. Symbolic Model Checkindluwer Academic Publishers, 1993.
Microsoft Visual Studio Developer Center, 20041 t p: / / msdn. mi cr osof t. coml
vst udi o/ .

C. Pacheco and M. D. Ernst. Eclat documents. Online nha@eh 2004. http://
peopl e. csail . m t. edu/ peopl e/ cpacheco/ ecl at/.

Parasoft. Jtest manuals version 5.1. Online manugl2004.ht t p: / / www. par asof t .
com .

W. Pugh. A practical algorithm for exact array dependeanalysis. Commun. ACM
35(8):102-114, 1992.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensihled highly-modular software
model checking framework. IRroc. 9th ESEC/FSHages 267—-276, 2003.

Robby, M. B. Dwyer, J. Hatcliff, and R. losif. Space-retion strategies for model checking
dynamic systems. IRroc. 2003 Workshop on Software Model Checkihgy 2003.

H. Schlenker and G. Ringwelski. POOC: A platform for @bjeriented constraint program-
ming. InProc. 2002 International Workshop on Constraint Solvingl &onstraint Logic
Programming pages 159-170, June 2002.

W. Visser, K. Havelund, G. Brat, and S. Park. Model cheglirograms. IiProc. 15th IEEE
International Conference on Automated Software Engimgepages 3—-12, 2000.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test inmdrggon with Java PathFinder.
In Proc. 2004 ACM SIGSOFT International Symposium on SoftWesting and Analysjs
pages 97-107, 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fdetecting redundant object-
oriented unit tests. IfProc. 19th IEEE International Conference on Automated V@i
Engineering pages 196—-205, Sept. 2004.

