
Symstra: A Framework for Generating Object-Oriented
Unit Tests using Symbolic Execution

Tao Xie1, Darko Marinov2, Wolfram Schulte3, David Notkin1

1 Dept. of Computer Science & Engineering, Univ. of Washington, Seattle, WA 98195, USA
2 Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801, USA

3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{taoxie,notkin}@cs.washington.edu, marinov@cs.uiuc.edu,

schulte@microsoft.com

Abstract. Object-oriented unit tests consist of sequences of method invocations.
Behavior of an invocation depends on the method’s argumentsand the state of
the receiver at the beginning of the invocation. Correspondingly, generating unit
tests involves two tasks: generating method sequences thatbuild relevant receiver-
object states and generating relevant method arguments. This paper proposes
Symstra, a framework that achieves both test generation tasks using symbolic
execution of method sequences with symbolic arguments. Thepaper defines sym-
bolic states of object-oriented programs and novel comparisons of states. Given a
set of methods from the class under test and a bound on the length of sequences,
Symstra systematically explores the object-state space ofthe class and prunes
this exploration based on the state comparisons. Experimental results show that
Symstra generates unit tests that achieve higher branch coverage faster than the
existing test-generation techniques based on concrete method arguments.

1 Introduction

Object-oriented unit tests are programs that test classes.Each test case consists of a
fixed sequence of method invocations with fixed arguments that explores a particular
aspect of the behavior of the class under test. Unit tests arebecoming an important
component of software development. The Extreme Programming discipline [5], for in-
stance, leverages unit tests to permit continuous and controlled code changes. Unlike
in traditional testing, it is developers (not testers) who write tests for every aspect of
the classes they develop. However, manual test generation is time consuming, and so
typical unit test suites cover only some aspects of the class.

Since unit tests are gaining importance, many companies nowprovide tools, frame-
works, and services around unit tests. Tools range from specialized test frameworks,
such as JUnit [18] or Visual Studio’s new team server [25], toautomatic unit-test gen-
eration, such as Parasoft’s Jtest [27]. However, existing test-generation tools typically
do not provide guarantees about the generated unit-test suites. In particular, the suites
rarely satisfy the branch-coverage test criterion [6], letalone a stronger criterion, such
as the bounded intra-method path coverage [3] of the class under test. We present an ap-
proach that uses symbolic execution to exhaustively explore bounded method sequences
of the class under test and to generate tests that achieve high branch and intra-method
path coverage for complex data structures such as containerimplementations.

1.1 Background

Generating test sequences involves two tasks: generating method sequences that build
relevant receiver-object state and generating relevant method arguments. Researchers
have addressed this problem several times. Most tools generate test sequences using
concrete representations. A popular approach is to use (smart) random generation;
this approach is embodied in tools such as Jtest [27] (a commercial tool for Java) or
JCrasher [13] and Eclat [26] (two research prototypes for Java). Random tests gener-
ated by these tools often execute the same sequences [34] andare not covering (do not
cover all sequences). The AsmLT model-based testing tool [15, 16] uses concrete-state
space-exploration techniques [12] to generate covering method sequences. But AsmLT
requires the user to carefully choose sufficiently large concrete domains for method
arguments and the right abstraction functions to guaranteethe covering. Tools such as
Korat [8] are able to generate non-isomorphic object graphsthat can be used for testing,
but they do not generate covering test sequences.

King proposed in the 70’s to use symbolic execution for testing and verification [20].
Because of the advances in constraint solvers, this technique recently regained the at-
tention for test generation. For example, the BZ-TT tool uses constraint solving to de-
rive method sequences from B specifications [22]. However, the B specifications are
not object-oriented. Khurshid et al. [19, 33] proposed an approach for generating tests
for Java classes based on symbolic execution. They show thattheir generation based
on symbolic execution generates tests faster than their model checking of method se-
quences with concrete arguments. This is expected: symbolic representations describe
not only single states, but sets of states, and when applicable, symbolic representations
can yield large improvements, witnessed for example by symbolic model checking [24].
The approach of Khurshid et al. [19, 33], however, generatesthe receiver-object states,
similar to Korat [8], only as object graphs, not through method sequences. Moreover, it
requires the user to provide specially constructed class invariants [23], which effectively
describe an over-approximation of the set of reachable object graphs.

Symbolic execution is the foundation of static code analysis tools. These tools typ-
ically do not generate test data, but automatically verify simple properties of programs.
These properties often allow merging symbolic states that stem from different execution
paths. However, for test generation, states have to be kept separate, since different tests
should be used for different paths. Recently, tools such as SLAM [2,4] and Blast [7,17]
were adapted for test generation. However, neither of them can deal with complex data
structures, which are the focus of this paper.

1.2 Contributions

This paper makes the following contributions.
Symbolic Sequence Exploration:We propose Symstra, a framework that uses

symbolic execution to generate method sequences. When applicable, Symstra uses an
exhaustive exploration of method sequences with symbolic variables for primitive-type
arguments. (We also discuss how Symstra can handle reference-type arguments.) Each
symbolic argument represents a set of all possible concretevalues for the argument.

Symstra uses symbolic execution to operate on symbolic states that include symbolic
variables.

Symbolic State Comparison:We present novel techniques for comparison of sym-
bolic states of object-oriented programs. Our techniques allow Symstra to prune the
exploration of the object state and thus generate tests faster, without compromising the
exhaustiveness of the exploration. In particular, the pruning preserves the intra-method
path coverage of the generated test suites.

Implementation: We describe an implementation of a test-generation tool forSym-
stra. Our implementation handles dynamically allocated structures, method pre- and
post-conditions, and symbolic data. Our current implementation does not support con-
currency, but such support can be added by reimplementing Symstra in a Java model
checker, such as Java Pathfinder [32] or Bogor [29].

Evaluation: We evaluate Symstra on seven subjects, most of which are complex
data structures. The experimental results show that Symstra generates tests faster than
the existing test-generation techniques based on exhaustive exploration of sequences
with concrete method arguments [15, 16, 33, 34]. Further, given the same time for gen-
eration, Symstra can generate tests that achieve better branch coverage than the ex-
isting techniques. Finally, Symstra works on ordinary Javaimplementations and does
not require the user to provide the additional methods required by some other ap-
proaches [8,33].

2 Example

This section illustrates how Symstra explores method sequences and generates tests.
Figure 1 shows a binary search tree classBST that implements a set of integers. Each
tree has a pointer to the root node. Each node has an element and pointers to the left
and right children. The class also implements the standard set operations:insert adds
an element, if not already in the tree, to a leaf;remove deletes an element, if in the
tree, replacing it with the smallest larger child if necessary; andcontains checks if an
element is in the tree. The class also has a default constructor that creates an empty tree.

Some tools such as Jtest [27] or JCrasher [13] test a class by generating random
sequences of methods; forBST, they could for example generate the following tests:

Test 1: Test 2:
BST t1 = new BST(); BST t2 = new BST();
t1.insert(0); t2.insert(2147483647);
t1.insert(-1); t2.remove(2147483647);
t1.remove(0); t2.insert(-2147483648);

Each test has a method sequence on the objects of the class, e.g., Test 1 creates a tree
t1, invokes twoinsert methods on it, and then oneremove. Typically, checking the
correctness (of outputs) for such tests relies on design-by-contract annotations trans-
lated into run-time assertions [10, 27] or on model-based testing [16]. If there are no
annotations or models, the tools check only the code robustness: execute the tests and
check for uncaught exceptions [13].

Some other tools [15, 16, 33, 34] can exhaustively explore all method sequences up
to a given length. Such exploration raises two questions: (1) what arguments to use for

class BST implements Set {
Node root;
static class Node {

int value;
Node left;
Node right;

}
void insert(int value) { ... }
void remove(int value) { ... }
bool contains(int value) { ... }

}

Fig. 1. A set implemented as a binary search tree

method calls, and (2) how to determine equivalent tests? These tools typically require
the user to provide a sufficiently good set of concrete valuesfor each argument, or based
on the argument type, use a set of default values that may missrelevant behaviors. These
tools check equivalence of test sequences by comparing the states that the sequences
build; the comparison uses either user-provided functionsor defaults, such as identity
or isomorphism. This generation is similar to explicit-state model checking [12].

Symstra also explores all sequences, but usingsymbolic valuesfor primitive-type
arguments in method calls. Such exploration relieves Symstra users from the burden
of providing concrete values: Symstra determines the relevant values during the execu-
tion. Having symbolic arguments necessitates symbolic execution [20]. It operates on a
symbolic state that consists of two parts: (1) aconstraint, known as thepath condition,
that must hold for the execution to reach a certain point and (2) a heap that contains
symbolic variables. When the symbolic execution encounters a branch, it explores both
outcomes, appropriately adding the branch condition or itsnegation to the constraint.
Symbolic state exploration in Symstra is conceptually similar to symbolic model check-
ing [24].

Let us consider the symbolic execution of the following sequence:

BST t = new BST();
t.insert(x1);
t.insert(x2);
t.insert(x3);
t.remove(x4);

This sequence has four method calls whose arguments are symbolic variablesx1, x2,
x3, andx4. While an execution of a sequence with concrete arguments produces one
state, symbolic execution of a sequence with symbolic arguments can produce several
states, thus resulting in an execution tree. Figure 2 shows apart of the execution tree
for this example. Each state has a heap and a constraint that must hold for that heap to
be created. The constructor first creates an empty tree. The first insert then adds the
elementx1 to the tree.

The secondinsert produces statess3, s4, ands5: if x1 = x2, the tree does not
change, and ifx2 > x1 (or x2 < x1), x2 is added in the right (or left) subtree. Note
that the symbolic statess2 ands4 aresyntacticallydifferent:s2 has the constrainttrue,
while s4 hasx1 = x2. However, these two symbolic states aresemanticallyequivalent:
they can be instantiated into the same set of concrete heaps by giving to x1 andx2

concrete values that satisfy the constraints; sincex2 does not appear in the heap ins4,
the constraint ins4 is “irrelevant”. Instead of state equivalence, it suffices to check state
subsumption: we say thats2 subsumess4 because the set of concrete heaps ofs4 is a

x1

s2 trues1 true

x1>x2∧

x1<x3∧

x1=x4

s8

x2

x3

x1=x2s4
x1

x2

x1>x2s3
x1

x2

x1<x2s5
x1

x1

x2 x3

x1>x2∧

x1<x3

s6

x1

x3 x2

x1<x2∧

x1>x3

s7

in
se
rt
(x

1
)

ne
w
BS
T(
)

in
se
rt
(x

2
)

Fig. 2.A part of the symbolic execution tree

subset of the set of concrete heaps ofs2. Hence, Symstra does not need to explores4

after it has already exploreds2. Symstra detects this by checking that the implication
of constraintsx1 = x2 ⇒ true holds. Our current Symstra implementation uses the
Omega library [28] and CVC Lite [11] to check the validity of the implication.

The thirdinsert again produces several symbolic states. Symstra appliesinsert

only on s3 ands5 (and not ons4). In particular, we focus ons6 ands7, two of the
symbolic states that these executions produce. These two states are syntactically dif-
ferent, but semantically equivalent: we can exchange the variablesx2 andx3 to obtain
the same symbolic state. Symstra detects this by checking that s6 ands7 are isomor-
phic(Section 3.2). Symstra finally appliesremove. Note again that one of the symbolic
states produced,s8, is subsumed by a previously explored state,s3.

This example has illustrated how Symstra would explore symbolic execution for one
particular sequence. Symstra actually exhaustively explores the symbolic execution tree
for all sequences up to a given length, pruning the exploration based on subsumption.
These sequences consists of all specified methods of the class under test, i.e.,insert,
remove, andcontains for BST.

After producing a symbolic states, Symstra can generate a specific test with con-
crete arguments to produce a concrete heap ofs. Symstra generates the test by traversing
the shortest path from the root of the symbolic execution tree to s and outputting the
method calls that it encounters. To generate concrete arguments for these calls, Symstra
uses a constraint solver. Our current implementation uses the POOC solver [31]. For
example, the tests that it generates fors3 ands5 are:

Test for s3: Test for s5:
BST t3 = new BST(); BST t5 = new BST();
t3.insert(-999999); t5.insert(-1000000);
t3.insert(-1000000); t5.insert(-999999);

A realistic suite of unit tests contains more sequences thattest the interplay between
insert, remove, andcontains methods. Section 4 summarizes such suites.

3 Framework and Implementation

We next formalize the notions introduced informally in the previous section. We first
describe how Symstra represents symbolic states. Symstra uses them for two purposes:
(1) during the symbolic execution of method invocations and(2) for representing the
states between method invocations in method sequences. We then present how Sym-
stra compares states based on the isomorphism of heaps and implication of constraints.
We next present the symbolic execution of method invocations. We finally present the
systematic exploration of method sequences and how Symstrauses symbolic state com-
parison to prune this exploration. We present the Symstra technique itself as well as our
current implementation.

3.1 Symbolic State

Symbolic states differ from concrete states, on which the usual program executions op-
erate, in that symbolic states contain symbolic expressions with symbolic variables and
also constraints on these variables [20]. Symstra uses the following symbolic expres-
sions and constraints:

· A symbolic variable is a symbolic expression. Each symbolicvariable has a type,
which is one of the Java types. For example,x1 andx2 may be each a symbolic
variable (and thus also a symbolic expression) of typeint.

· A Java constant of some type is a symbolic expression of that type.
· For each Java operator� with n operands,n symbolic expressions of the appropri-

ate operand types connected with� are a symbolic expression of the result type.
For example,x1 + x2 andx1 > x2 are expressions of typeint andboolean,
respectively.

· Symbolic expressions of typeboolean are constraints.

Let P be the set of all primitive values, including integers,true, false, etc. LetV
be a set of infinite number of symbolic variables of each type andU a set of all possible
expressions formed fromV andP . Given a valuation for the variables,η : V → P , we
extend it to evaluate all expressionsη : U → P as follows:η(p) = p for all p ∈ P , and
η(�u1, . . . , un) = eval(�, η(u1), . . . , η(un)) for all u1, . . . , un ∈ U and operations
�, where eval evaluates operations on primitive values according to the Java semantics.

In object-oriented programs, a concrete state consists of aglobal heap and a stack (in
general one stack for each thread, but we consider here only single-threaded programs),
as well as several other parts, such as metadata for classes and program counters. Sym-
bolic states in Symstra have the same parts as concrete states, but the heaps and stacks
in symbolic states can contain symbolic expressions; additionally, each symbolic state
has a constraint. We focus on the symbolic state between method sequences.

Definition 1. A symbolic state〈C, H〉 is a pair of a constraint and a symbolic heap.

We view each heap as a graph: nodes represent objects (as wellas primitive val-
ues and symbolic expressions) and edges represent object fields. LetO be some set of
objects whose fields form a setF . Each object has a field that represents its class. We
consider arrays as objects whose fields are labelled with (integer) array indexes and
point to the array elements.

Definition 2. A symbolic heap is an edge-labelled graph〈O, E〉, whereE ⊆ O×F ×
(O ∪ {null} ∪ U) such that for each fieldf of eacho ∈ O exactly one〈o, f, o′〉 ∈ E.
A concrete heap has only concrete values:o′ ∈ O ∪ {null} ∪ P .

3.2 Heap Isomorphism

We define heap isomorphism as graph isomorphism based on nodebijection [8]. We are
interested in detecting isomorphic heaps because they leadto equivalent method behav-
iors; hence, it suffices to explore only one representative from each isomorphism parti-
tion. Nodes in symbolic heaps contain symbolic variables, so we first define a renaming
of symbolic variables. Given a bijectionτ : V → V , we extend it to the wholeτ : U →
U as follows:τ(p) = p for all p ∈ P , andτ(�u1, . . . , un) = �τ(u1), . . . , τ(un) for
all u1, . . . , un ∈ U and operations�. We further extendτ to substitute free variables
in formulas with bound variables, avoiding capture as usual.

Definition 3. Two heaps〈O1, E1〉 and〈O2, E2〉 are isomorphiciff there are bijections
ρ : O1 → O2 andτ : V → V such that:

E2 = {〈ρ(o), f, ρ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ O1} ∪ {〈ρ(o), f, null〉|〈o, f, null〉 ∈ E1} ∪

{〈ρ(o), f, τ(o′)〉|〈o, f, o′〉 ∈ E1, o
′ ∈ U}.

Note that the definition allows only object identities and symbolic variables to vary:
two isomorphic heaps have the same fields for all objects and equal (up to renaming)
symbolic expressions for all primitive fields.

The state exploration in Symstra focuses on the state of several objects and does
not consider the entire heap; in this context, the state of anobjecto consists of the
values of the fields ofo and fields of all objectsreachablefrom o. From a program
heap〈O, E〉 and a tuple〈v0, . . . , vn〉 of pointers and symbolic expressionsvi ∈ O∪U ,
where0 ≤ i ≤ n, Symstra constructs arooted heap[34] 〈Oh, Eh〉 that has a unique
root objectr ∈ Oh: Symstra first creates the heap〈O′, E′〉, whereO′ = O ∪ {r},
r 6∈ O, andE′ = E∪{〈r, i, vi〉|0 ≤ i ≤ n}, and then creates〈Oh, Eh〉 as the subgraph
of 〈O′, E′〉 such thatOh ⊆ O′ is the set of all objects reachable fromr within E′ and
Eh = {〈o, f, o′〉 ∈ E′|o ∈ Oh}.

We can efficiently check isomorphism of rooted heaps, even though for general
graphs it is unknown whether checking isomorphism can be done in polynomial time.
Symstralinearizesheaps into integer sequences such that checking heap isomorphism
corresponds to checking sequence equality. Figure 3 shows the linearization algorithm.
It starts from the root and traverses the heap depth first. It assigns a unique identifier to
each object, keeps this mapping inobjs and reuses it for objects that appear in cycles.
It also assigns a unique identifier to each symbolic variable, keeps this mapping invars
and reuses it for variables that appear several times in the heap.

A similar linearization is used to represent concrete heapsin model checking [1,30,
32]. This paper extends the linearization from our previouswork [34] with linSymExp
that handles symbolic expressions; this improves on the approach of Khurshid et al. [19,
33] that does not use any comparison for symbolic expressions. It is easy to show that
our linearization normalizes rooted heaps.

Map<Object,int> objs; // maps objects to unique ids
Map<SymVar,int> vars; // maps symbolic variables to unique ids

int[] linearize(Object root, Heap <O,E>) {
objs = new Map(); vars = new Map();
return lin(root, <O,E>>;

}

int[] lin(Object root, Heap <O,E>) {
if (objs.containsKey(root))

return singletonSequence(objs.get(root));
int id = objs.size() + 1; objs.put(root, id);
int[] seq = singletonSequence(id);
Edge[] fields = sortByField({ <root, f, o> in E });
foreach (<root, f, o> in fields) {

if (isSymbolicExpression(o)) seq.append(linSymExp(o));
elseif (o == null) seq.append(0);
else seq.append(lin(o, <O,E>)); // pointer to an object

}
return seq;

}

int[] linSymExp(SymExp e) {
if (isSymVar(e)) {

if (!vars.containsKey(e))
vars.put(e, vars.size() + 1);

return singletonSequence(vars.get(e));
} elseif (isPrimitive(e)) return uniqueRepresentation(e);
else { // operation with operands

int[] seq = singletonSequence(uniqueRepresentation(e.getOperation()));
foreach (SymExp e’ in e.getOperands())
seq.append(linSymExp(e’));

return seq;
}

}

Fig. 3. Pseudo-code of linearization for a symbolic rooted heap

Theorem 1. Two rooted heaps〈O1, E1〉 (with rootr1) and〈O2, E2〉 (with rootr2) are
isomorphic ifflinearize(r1, 〈O1, E1〉)=linearize(r2, 〈O2, E2〉).

3.3 State Subsumption

We define symbolic state subsumption based on the concrete heaps that each symbolic
state represents. Symstra uses state subsumption to prune the exploration. To instantiate
a symbolic heap into a concrete heap, we replace the symbolicvariables in the heap
with primitive values that satisfy the constraint in the symbolic state.

Definition 4. An instantiationI(〈C, H〉) of a symbolic state〈C, H〉 is a set of concrete
heapsH ′ such that there exists a valuationη : V → P for whichη(C) is true andH ′

is the evaluationη(H) of all expressions inH according toη.

Definition 5. A symbolic state〈C1, H1〉 subsumesanother symbolic state〈C2, H2〉, in
notation〈C1, H1〉 ⊇ 〈C2, H2〉, iff for each concrete heapH ′

2 ∈ I(〈C2, H2〉), there
exists a concrete heapH ′

1 ∈ I(〈C1, H1〉) such thatH ′
1 andH ′

2 are isomorphic.

Symstra uses the algorithm in Figure 4 to check if the constraint of 〈C2, H2〉, af-
ter suitable renaming, implies the constraint of〈C1, H1〉. Note that the implication is

boolean checkSubsumes(Constraint C1, Heap H1,
Constraint C2, Heap H2) {

int[] i1 = linearize(root(H1), H1);
Map<SymVar,int> v1 = vars; // at the end of previous linearization
Set<SymVar> n1 = variables(C1) - v1.keys(); // variables not in the heap
int[] i2 = linearize(root(H2), H2);
Map<SymVar,int> v2 = vars; // at the end of previous linearization
Set<SymVar> n2 = variables(C2) - v2.keys(); // variables not in the heap
if (i1 <> i2) return false;
Renaming τ = v2 ◦ v1−1 // compose v2 and the inverse of v1
return checkValidity(τ(∃n2. C2) ⇒ ∃n1. C1);

}

Fig. 4. Pseudo-code of subsumption checking for symbolic states

universally quantified over the (renamed) symbolic variables that appear in the heaps
and existentially quantified over the symbolic variables that do not appear in the heaps
(more precisely only inH1, because the existential quantifier forn2 in the premise of
the implication becomes a universal quantifier for the wholeimplication). We can show
that this algorithm is a conservative approximation of subsumption.

Theorem 2. If checkSubsumes(〈C1, H1〉, 〈C2, H2〉) then〈C1, H1〉 subsumes〈C2, H2〉.

Symstra gains the power and inherits the limitations from the technique used to
check the implication on the (renamed) constraints. The current Symstra prototype uses
the Omega library [28], which provides a complete decision procedure for Presburger
arithmetic, and CVC Lite [11], an automatic theorem prover,which has decision pro-
cedures for several types of constraints, including real linear arithmetic, uninterpreted
functions, arrays, etc. Since these checks can consume a lotof time, Symstra further
uses the following conservative approximation: if free-variables(∃n1. C1) are not a
subset of free-variables(τ(∃n2. C2)), returnfalse without checking the implication.

3.4 Symbolic Execution

We next discuss the symbolic execution of one method in a method sequence. Each
method execution starts with one symbolic state and produces several symbolic states.
We use the notationσm(〈C, H〉) to denote the set{〈C1, H1〉, . . . , 〈Cn, Hn〉} of states
that the symbolic execution,σ, of the methodm produces starting from the state〈C, H〉.

Following the typical symbolic executions [20, 33], Symstra symbolically explores
both branches ofif statements, modifying the constraint with a conjunct that needs to
hold for the execution to take a certain branch. In this context, the constraint is called
path condition, because it is a conjunction of conditions that need to hold for the ex-
ecution to take a certain path and reach the current address.This symbolic execution
directly explores every path of the method under consideration. The common issue in
the symbolic execution is that the number of paths may be infinite (or too large as it
grows exponentially with the number of branches) and thusσm(〈C, H〉) may be (prac-
tically) unbounded. In such cases, Symstra can use the standard set of heuristics to
explore only some of the paths [9,33].

The current Symstra prototype implements the execution steps on symbolic states
by rewriting the code to operate on symbolic expressions. Further, Symstra implements
the exploration of different branches by re-executing the method from the beginning
for each path, without storing any intermediate states. Note that Symstra re-executes
only one method (for different paths), not the whole method sequence. (This effectively
produces a depth-first exploration of paths within one method, while the exploration of
states between methods is breadth-first as explained in the next section.)

Our Symstra prototype also implements the standard optimizations for symbolic
execution. First, Symstra simplifies the constraints that it builds at branches; specifi-
cally, before conjoining the path condition so farC and the current branch condition
C′ (whereC′ is a condition from anif or its negation), Symstra checks if some of the
conjuncts inC impliesC′; if so, Symstra does not conjoinC′. Second, Symstra checks
if the constraintC&&C′ is unsatisfiable; if so, Symstra stops the current path of sym-
bolic execution, because it is an infeasible path. The current Symstra prototype can use
the Simplify [14] theorem prover or the Omega library [28] tocheck unsatisfiability.
We have found that Omega is faster, but it handles only lineararithmetic constraints.

Given a symbolic state at the entry of a method execution, Symstra uses symbolic
execution to achieve structural coverage within the method, because symbolic execu-
tion systematically explores all feasible paths within themethod. If the user of Symstra
is interested in only the tests that achieve new branch coverage, our Symstra proto-
type monitors the branch coverage during symbolic execution and selects a symbolic
execution for concrete test generation (Section 3.6) when the symbolic execution cov-
ers a new branch. The Symstra prototype can also be extended for selecting symbolic
executions that achieve new bounded intra-method path coverage [3].

3.5 Symbolic State Exploration

We next present the symbolic state space for method sequences and how Symstra sys-
tematically explores this state space. The state space consists of all states that are reach-
able with the symbolic execution of all possible method sequences for the class under
test. LetC andM be a set of the constructor and non-constructor methods of this class.
Each method sequence starts with a constructor fromC followed by several methods
fromM. We denote withΣC,M the state space for these sequences. The initial symbolic
state iss0 = 〈true, {}〉: the constraint is true, and the heap is empty. The state space
includes the states that the symbolic execution produces for the constructors and meth-
ods:

⋃
c∈C σc(s0) ⊂ ΣC,M and∀s ∈ ΣC,M.

⋃
m∈M σm(s) ⊂ ΣC,M. As usual [12],

ΣC,M is the least fixed point of these equations. The state space istypically infinite.
The current Symstra prototype exhaustively explores a bounded part of the symbolic

state space using a breadth-first search. The inputs to Symstra are a set of constructor
C and non-constructor methodsM of the class under test and a bound on the length of
sequences. Symstra maintains a set of explored states and a processing queue of states.
Symstra processes the queue in a breadth-first manner: it takes one state and symbol-
ically executes each method under test (constructor at the beginning of the sequence
and a non-constructor after that) for each path on this state. Every such execution yields
a new symbolic state. Symstra adds the new state to the queue for further exploration
only if it is not subsumed by an already explored state from the set. Otherwise, Symstra

prunes the exploration: the new symbolic state represents only a subset of the concrete
heaps that some explored symbolic state represents; it is thus unnecessary to explore the
new state further. Pruning based on subsumption plays the key role in enabling Symstra
to explore large state spaces.

3.6 Concrete Test Generation

During the symbolic state exploration, Symstra also buildsspecific concrete tests that
lead to the explored states. Whenever Symstra finishes a symbolic execution of a method
that generates a new symbolic state〈C, H〉, it also generates asymbolic test. This test
consists of the constraintC and the shortest method sequence that reaches〈C, H〉.
(Symstra associates such a method sequence with each symbolic state and dynamically
updates it during execution). Symstra then instantiates a symbolic test using the POOC
constraint solver [31] to solve the constraintC over the symbolic arguments for methods
in the sequence. Based on the produced solution, Symstra obtains concrete arguments
for the sequence leading to〈C, H〉. Symstra exports such concrete test sequences into
a JUnit test class [18]. It also exports the constraintC associated with the test as a
comment for the test in the JUnit test class.

At the class-loading time, Symstra instruments each branching point of the class
under test for measuring branch coverage at the bytecode level. It also instruments each
method of the class to capture uncaught exceptions at runtime. The user can configure
Symstra to select only those generated tests that increase branch coverage or throw new
uncaught exceptions.

4 Evaluation

This section presents our evaluation of Symstra for exploring method sequences and
generating tests. We compare Symstra with Rostra [34], our previous framework that
generates tests using bounded-exhaustive exploration of sequences with concrete ar-
guments. We have developed Symstra on top of Rostra, so that the comparison does
not give an unfair advantage to Symstra because of unrelatedimprovements. In these
experiments, we have used the Simplify [14] theorem prover to check unsatisfiability
of path conditions, the Omega library [28] to check implications, and the POOC con-
straint solver [31] to solve constraints. We have performedthe experiments on a Linux
machine with a Pentium IV 2.8 GHz processor using Sun’s Java 2SDK 1.4.2 JVM with
512 MB allocated memory.

Table 1 lists the seven Java classes that we use in the experiments. The first six
classes were previously used in evaluating Rostra [34], andthe last five classes were
used in evaluating Korat [8]. The columns of the table show the class name, the public
methods under test (that the generated sequences consist of), some private methods
invoked by the public methods, the number of non-comment, non-blank lines of code
in all those methods, and the number of branches for each subject.

We use Symstra and Rostra to generate test sequences with up to N methods. Rostra
also requires concrete values for arguments, so we set it to useN different arguments
(the integers from 0 toN − 1) for methods under test. Table 2 shows the comparison

class methods under test some private methods #ncnb #
lines branches

IntStack push,pop – 30 9
UBStack push,pop – 59 13
BinSearchTree insert,remove removeNode 91 34
BinomialHeap insert,extractMin findMin,merge 309 70

delete unionNodes,decrease
LinkedList add,remove,removeLast addBefore 253 12
TreeMap put,remove fixAfterIns 370 170

fixAfterDel,delEntry
HeapArray insert,extractMax heapifyUp,heapifyDown 71 29

Table 1.Experimental subjects

between Symstra and Rostra. We rangeN from five to eight. (ForN < 5, both Sym-
stra and Rostra generate tests really fast, usually within acouple of seconds, but those
tests do not have good quality.) We tabulate the time to generate the tests (measured in
seconds, Columns 3 and 7), the number of explored symbolic and concrete object states
(Columns 4 and 8), the number of generated tests (Columns 5 and 9), and the branch
coverage1 achieved by the generated tests (Columns 6 and 10). In Columns 5 and 9,
we report the total number of generated tests and, in the parentheses, the cumulative
number of tests that increase the branch coverage.

During test generation, we set a three-minute timeout for each iteration of the
breadth-first exploration: when an iteration exceeds threeminutes, the exhaustive ex-
ploration of Symstra or Rostra is stopped and the system proceeds with the next itera-
tion. We use a “*” mark for each entry where the test-generation process timed out; the
state exploration of these entries is no longer exhaustive.We use a “–” mark for each
entry where Symstra or Rostra exceeded the memory limit.

The results indicate that Symstra generates method sequences of the same length
N often much faster than Rostra, thus enabling Symstra to generate longer method se-
quences within a given time limit. Both Symstra and Rostra achieve the same branch
coverage for method sequences of the same lengthN . However, Symstra achieves
higher coverage faster. It also takes less memory and can finish generation in more
cases than Rostra. These results are due to the fact that eachsymbolic state, which
Symstra explores at once, actually describes a set of concrete states, which Rostra must
explore one by one. Rostra often exceeds the memory limit when N = 7 or N = 8,
which is often not enough to guarantee full branch coverage.

5 Discussion and Future Work

Specifications.Symstra uses specifications, i.e., method pre- and post-conditions and
class invariants, written in the Java Modelling Language (JML) [21]. The JML tool-
set transforms these constructs into run-time assertions that throw JML-specific excep-

1 We measure the branch coverage at the bytecode level during the state exploration of both
Symstra and Rostra, and calculate the total number of branches also at the bytecode level.

Symstra Rostra
class N time states tests %cov time states tests %cov

UBStack 5 0.95 22 43(5) 92.3 4.98 656 1950(6) 92.3
6 4.38 30 67(6) 100.0 31.83 3235 13734(7) 100.0
7 7.20 41 91(6) 100.0 *269.68 *10735 *54176(7) *100.0
8 10.64 55 124(6) 100.0 - - - -

IntStack 5 0.23 12 18(3) 55.6 12.76 4836 5766(4) 55.6
6 0.42 16 24(4) 66.7 - - - -
7 0.50 20 32(5) 88.9 *689.02 *30080 *52480(5) *66.7
8 0.62 24 40(6) 100.0 - - - -

BinSearchTree 5 7.06 65 350(15) 97.1 4.80 188 1460(16) 97.1
6 28.53 197 1274(16) 100.0 23.05 731 7188(17) 100.0
7 136.82 626 4706(16) 100.0 - - - -
8 *317.76 *1458 *8696(16) *100.0 - - - -

BinomialHeap 5 1.39 6 40(13) 84.3 4.97 380 1320(12) 84.3
6 2.55 7 66(13) 84.3 50.92 3036 12168(12) 84.3
7 3.80 8 86(15) 90.0 - - - -
8 8.85 9 157(16) 91.4 - - - -

LinkedList 5 0.56 6 25(5) 100.0 32.61 3906 8591(6) 100.0
6 0.66 7 33(5) 100.0 *412.00 *9331 *20215(6) *100.0
7 0.78 8 42(5) 100.0 - - - -
8 0.95 9 52(5) 100.0 - - - -

TreeMap 5 3.20 16 114(29) 76.5 3.52 72 560(31) 76.5
6 7.78 28 260(35) 82.9 12.42 185 2076(37) 82.9
7 19.45 59 572(37) 84.1 41.89 537 6580(39) 84.1
8 63.21 111 1486(37) 84.1 - - - -

HeapArray 5 1.36 14 36(9) 75.9 3.75 664 1296(10) 75.9
6 2.59 20 65(11) 89.7 - - - -
7 4.78 35 109(13) 100.0 - - - -
8 11.20 54 220(13) 100.0 - - - -

Table 2.Experimental results of test generation using Symstra and Rostra

tions when violated. Generating method sequences for methods with JML specifications
amounts to generatinglegalmethod sequences that satisfy pre-conditions and class in-
variants, i.e., do not throw exceptions for these constructs. If during the exploration
Symstra finds a method sequence that violates a post-condition or invariant, Symstra
has discovered a bug; Symstra can be configured to generate such tests and continue or
stop test generation. If a class implementation is correct with respect to its specification,
paths that throw post-condition or invariant exceptions should be infeasible.

Symstra operates on the bytecode level. It can perform testing of the specifications
woven into method bytecode by the JML tool-set or by similar tools. Note that in this
setting Symstra essentially uses black-box testing [33] toexplore only those symbolic
states that are produced by method executions that satisfy pre-conditions and class in-
variants; conditions that appear in specifications simply propagate into the constraints
associated with a symbolic state explored by Symstra. Usingsymbolic execution, Sym-
stra thus obtains the generation of legal test sequences “for free”.

Performance.Based on state subsumption, our current Symstra prototype explores one
or more symbolic states that have the isomorphic heap. We plan to evaluate an approach
that explores exactly oneunionsymbolic state for each isomorphic heap. We can create
a union state using a disjunction of the constraints for all symbolic states with the iso-
morphic heap. Each union state subsumes all the symbolic states with the isomorphic
heap, and thus exploring only union states can further reduce the number of explored
states without compromising the exhaustiveness of the exploration. (Subsumption is a
special case of union; ifC2 ⇒ C1, thenC1 ∨ C2 simplifies toC1.)

Symstra enables exploring longer method sequences than thetechniques based on
concrete arguments. However, users may want to have an exploration of even longer
sequences to achieve some test purpose. In such cases, the users can apply several tech-
niques that trade the guarantee of the intra-method path coverage for longer sequences.
For example, the user may provide abstraction functions forstates [23], as used for in-
stance in the AsmLT generation tool [15], or binary methods for comparing states (e.g.
equals), as used for instance in Rostra. Symstra can then generate tests that instead
of subsumption use these user-provided functions for comparing state. This leads to a
potential loss of intra-method path coverage but enables faster, user-controlled explo-
ration. To explore longer sequences, Symstra can also use standard heuristics [9,33] for
selecting only a set of paths instead of exploring all paths.

Limitations. The use of symbolic execution has inherent limitations. Forexample, it
cannot precisely handle array indexes that are symbolic variables. This situation occurs
in some classes, such asDisjSet andHashMap used previously in evaluating Ros-
tra [34]. One solution is to combine symbolic execution with(exhaustive or random)
exploration based on concrete arguments: a static analysiswould determine which ar-
guments can be symbolically executed, and for the rest, the user would provide a set of
concrete values [15].

So far we have discussed only methods that take primitive arguments. We cannot
directly transform non-primitive arguments into symbolicvariables of primitive type.
However, we can use the standard approach for generating non-primitive arguments:
generate them also as sequences of method calls that may recursively require more se-
quences of method calls, but eventually boil down to methodsthat have only primitive
values (ornull). (Note that this also handles mutually recursive classes.) JCrasher [13]
and Eclat [26] take a similar approach. Another solution is to transform these argu-
ments into reference-type symbolic variables and enhance the symbolic execution to
support heap operations on symbolic references. Concrete objects representing these
variables can be generated by solving the constraints and setting the instance fields us-
ing reflection. However, the collected constraints are often not sufficient to generate
legal instances, in which case an additional object invariant is required.

6 Conclusion

We have proposed Symstra, a novel framework that uses symbolic execution to gen-
erate a small number of method sequences that reach high branch and intra-method
path coverage for complex data structures. Symstra exhaustively explores method se-
quences with symbolic arguments up to a given length. It prunes the exploration based

on state subsumption; this pruning speeds up the exploration, without compromising its
exhaustiveness. We have implemented a test-generation tool for Symstra and evaluated
it on seven subjects, most of which are complex data structures. The results show that
Symstra generates tests faster than the existing test-generation techniques based on ex-
haustive exploration of sequences with concrete method arguments, and given the same
time limit, Symstra can generate tests that achieve better branch coverage than these
existing techniques.

Acknowledgments

We thank Corina Pasareanu and Willem Visser for their comments on our implemen-
tation of subsumption checking, help in using symbolic execution, and valuable feed-
back on an earlier version of this paper. We also thank Wolfgang Grieskamp, Sarfraz
Khurshid, Viktor Kuncak, and Nikolai Tillmann for useful discussions on this work
and anonymous reviewers for the comments on a previous version of this paper. Darko
Marinov would like to thank his advisor, Martin Rinard, for supporting part of this work
done at MIT. This work was funded in part by NSF grant CCR00-86154. We also ac-
knowledge support through the High Dependability Computing Program from NASA
Ames cooperative agreement NCC-2-1298.

References

1. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie.Zing: A model checker for
concurrent software. InProc. 6th International Conference on Computer Aided Verification,
pages 484–487, 2004.

2. T. Ball. A theory of predicate-complete test coverage andgeneration. Technical Report
MSR-TR-2004-28, Microsoft Research, Redmond, WA, April 2004.

3. T. Ball and J. R. Larus. Using paths to measure, explain, and enhance program behavior.
IEEE Computer, 33(7):57–65, 2000.

4. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of C
programs. InProc. the ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation, pages 203–213, 2001.

5. K. Beck.Extreme programming explained. Addison-Wesley, 2000.
6. B. Beizer.Software Testing Techniques. International Thomson Computer Press, 1990.
7. D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating tests from

counterexamples. InProc. 26th International Conference on Software Engineering, pages
326–335, 2004.

8. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java predicates.
In Proc. International Symposium on Software Testing and Analysis, pages 123–133, 2002.

9. W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding dynamic program-
ming errors.Softw. Pract. Exper., 30(7):775–802, 2000.

10. Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML
and JUnit way. InProc. 16th European Conference Object-Oriented Programming, pages
231–255, June 2002.

11. S. B. Clark W. Barrett. CVC Lite: A new implementation of the cooperating validity checker.
In Proc. 16th International Conference on Computer Aided Verification, pages 515–518, July
2004.

12. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, Cambridge,
MA, 1999.

13. C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness tester for Java.Software:
Practice and Experience, 34:1025–1050, 2004.

14. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theoremprover for program checking.
Technical Report HPL-2003-148, HP Laboratories, Palo Alto, CA, 2003.

15. Foundations of Software Engineering, Microsoft Research. The AsmL test generator tool.
http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

16. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. InProc. International Symposium on Software Testing and
Analysis, pages 112–122, 2002.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with BLAST.
In Proc. 10th SPIN Workshop on Software Model Checking, pages 235–239, 2003.

18. JUnit, 2003.http://www.junit.org.
19. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalizedsymbolic execution for model

checking and testing. InProc. 9th International Conference on Tools and Algorithmsfor the
Construction and Analysis of Systems, pages 553–568, April 2003.

20. J. C. King. Symbolic execution and program testing.Commun. ACM, 19(7):385–394, 1976.
21. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral inter-

face specification language for Java. Technical Report TR 98-06i, Department of Computer
Science, Iowa State University, June 1998.

22. B. Legeard, F. Peureux, and M. Utting. A comparison of theLIFC/B and TTF/Z test-
generation methods. InProc. 2nd International Z and B Conference, pages 309–329, January
2002.

23. B. Liskov and J. Guttag.Program Development in Java: Abstraction, Specification, and
Object-Oriented Design. Addison-Wesley, 2000.

24. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
25. Microsoft Visual Studio Developer Center, 2004.http://msdn.microsoft.com/

vstudio/.
26. C. Pacheco and M. D. Ernst. Eclat documents. Online manual, Oct. 2004. http://

people.csail.mit.edu/people/cpacheco/eclat/.
27. Parasoft. Jtest manuals version 5.1. Online manual, July 2004.http://www.parasoft.

com/.
28. W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM,

35(8):102–114, 1992.
29. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensibleand highly-modular software

model checking framework. InProc. 9th ESEC/FSE, pages 267–276, 2003.
30. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model checking

dynamic systems. InProc. 2003 Workshop on Software Model Checking, July 2003.
31. H. Schlenker and G. Ringwelski. POOC: A platform for object-oriented constraint program-

ming. In Proc. 2002 International Workshop on Constraint Solving and Constraint Logic
Programming, pages 159–170, June 2002.

32. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. InProc. 15th IEEE
International Conference on Automated Software Engineering, pages 3–12, 2000.

33. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java PathFinder.
In Proc. 2004 ACM SIGSOFT International Symposium on SoftwareTesting and Analysis,
pages 97–107, 2004.

34. T. Xie, D. Marinov, and D. Notkin. Rostra: A framework fordetecting redundant object-
oriented unit tests. InProc. 19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

