
Making Exceptions on Exception Handling

Tao Xie

North Carolina State University

Raleigh, NC, USA

xie@csc.ncsu.edu

Suresh Thummalapenta

IBM Research - India

Bangalore, India

surthumm@in.ibm.com

Abstract—The exception-handling mechanism has been
widely adopted to deal with exception conditions that may arise
during program executions. To produce high-quality programs,
developers are expected to handle these exception conditions
and take necessary recovery or resource-releasing actions.
Failing to handle these exception conditions can lead to not only
performance degradation, but also critical issues. Developers
can write formal specifications to capture expected exception-
handling behavior, and then apply tools to automatically ana-
lyze program code for detecting specification violations. How-
ever, in practice, developers rarely write formal specifications.
To address this issue, mining techniques have been used to mine
common exception-handling behavior out of program code. In
this paper, we discuss challenges and achievements in precisely
specifying and mining formal exception-handling specifications,
as tackled by our previous work. Our key insight is that
expected exception-handling behavior may be “conditional” or
may need to accommodate “exceptional” cases.

I. INTRODUCTION

Modern programming languages such as Java, C#, and

C++ provide a mechanism, called exception handling, to deal

with exception conditions that may arise during program

executions. To produce high-quality programs, developers

are expected to handle these exception conditions and take

necessary recovery or resource-releasing actions [9]. Failing

to handle these exception conditions can lead to not only

performance degradation, but also critical issues [3], [7].

Although the exception-handling mechanism has ex-

isted from many years, developers often neglect writing

exception-handling code for various reasons, such as those

discovered in a study conducted by Shah et al. [2]. Among

them, one main reason for neglecting exception handling is

that it requires much additional code, and especially that the

code is executed only in rare scenarios. Therefore, devel-

opers often do not see strong need for writing exception-

handling code since it may not be worth spending time

on writing exception-handling code. The study shows that

developers wait until the actual errors occur and then add

necessary exception-handling code on demand.

Another important reason is that, although languages

enforce developers to write exception-handling code, via

compilation errors such as not handling a certain exception,

it is easy to defeat the language enforcement. For example,

consider the code example shown in Figure 1. The code
example is well written from the perspective of exception

handling. The example handles SQLException and also

includes necessary code for taking a recovery action. In

addition, the example includes resource-releasing actions to

make sure that all resources are released after exception

conditions are satisfied (e.g., using the finally construct

in Figure 1). Figure 2 shows a functionally-equivalent code

example handling exceptions improperly. As is shown in the

figure, the developers can defeat the language enforcement

by handling SQLException via simply creating an empty

catch block along with using SQLException’s super class

Exception.

01:Connection conn = null; Statement stmt = null;

02:BufferedWriter bw = null; FileWriter fw = null;

03:try {
04: fw = new FileWriter("temp.txt");

05: bw = new BufferedWriter(fw);

06: conn = DriverManager.getConnection("jdbc", "ps", "ps");

07: stmt = conn.createStatement();

08: stmt.executeUpdate("delete from table1");

09: bw.write("...");

10: conn.commit();

11:} catch (SQLException se) {
12: if(conn != null) conn.rollback();

13:} catch (IOException ie) {
14: if(bw != null) bw.flush();

15:} finally {
16: if(stmt != null) stmt.close();

17: if(conn != null) conn.close();

18: if(bw != null) bw.close();

19:}

Figure 1. A well-written code example handling exceptions properly.

01:Connection conn = null; Statement stmt = null;

02:BufferedWriter bw = null; FileWriter fw = null;

03:try {
04: fw = new FileWriter("temp.txt");

05: bw = new BufferedWriter(fw);

06: conn = DriverManager.getConnection("jdbc", "ps", "ps");

07: stmt = conn.createStatement();

08: stmt.executeUpdate("delete from table1");

09: bw.write("...");

10: conn.commit();

11: stmt.close();

12: conn.close();

13: bw.close();

14:} catch (Exception ex) {
15:}

Figure 2. A code example handling exceptions improperly.

In practice, developers may tend to write code similar to

the code example in Figure 2, since it is much simple and

easy to understand, and more importantly behaves exactly



01:Connection conn = null; Statement stmt = null;

02:ResultSet res = null;

03:try {
04: conn = DriverManager.getConnection("jdbc", "ps", "ps");

05: stmt = conn.createStatement();

06: res = stmt.executeQuery("select col from table1");

07: while(res.next())

08: System.out.println(res.getString(1));

09:} finally {
10: if(res != null) res.close();

11: if(stmt != null) stmt.close();

12: if(conn != null) conn.close();

13:}

Figure 3. A code example that retrieves data from a database.

the same way as the code example in Figure 1 under normal

circumstances. Furthermore, the exception conditions that

were handled in Figure 1 may not be satisfied during normal

testing.

Even when developers write code similar to the code

example in Figure 1, the developers may often fail to write

complete exception-handling code (e.g., missing a recovery

action or a resource-releasing action).

To address these problems in practice, developers can

write formal specifications to capture expected exception-

handling behavior, and then apply tools to automatically

analyze program code for detecting specification violations.

However, in practice, developers rarely write formal specifi-

cations [1]. To address this issue, mining techniques [8], [5]

have been used to mine common exception-handling behav-

ior out of program code [3], [4]. Such common exception-

handling behavior could likely be expected behavior to be

included in formal exception-handling specifications. In this

paper, we discuss challenges and achievements in precisely

specifying and mining formal exception-handling specifica-

tions, as tackled by our previous work [3], [4].

Our key insight is that expected exception-handling be-

havior may be “conditional” or may need to accommodate

“exceptional” cases. The “conditional” nature [3] denotes

that a behavioral rule needs to be followed only under

some situations. The “exceptional” nature [4] denotes that

a behavioral rule needs to be followed under some majority

situations whereas a different behavioral rule needs to be fol-

lowed under some minority (i.e., “exceptional”) situations.

II. SPECIFYING AND MINING PRECISE “CONDITIONAL”

SPECIFICATIONS

Existing specification mining techniques [6] mine

exception-handling specifications as rules of the simple form

“FCa ⇒ FCe”, where FCa and FCe are function calls.

The preceding rule describes that the function call FCa

should be always followed by FCe in all paths, including

exception paths that are exercised when exception condi-

tions are satisfied. However, such simple-form specifications

may be imprecise or insufficient in characterizing expected

exception-handling behavior.

To illustrate such issue, we use the code example shown in

Figure 3. This code example is similar to the code example

in Figure 1, where both code examples open database con-

nections. However, the code example in Figure 1 modifies

contents of the database, whereas the code example in

Figure 3 retrieves some data from the database. Therefore,

the code example in Figure 3 does not require the rollback

operation, as it does not modify the database contents. Con-

sider a simple-form specification “Connection creation ⇒

Connection rollback”. This rule describes that a rollback

function call should appear in exception paths whenever a

Connection is created. However, this rule should apply to

only the code example in Figure 1 and should not apply
to the code example in Figure 3; such rule in its simple

form is in fact applicable to both code examples, causing

a false warning of rule violation for the code example in

Figure 3. The primary reason is that the rollback function

call should be invoked only when there is any change made

to the database.

To address this issue and to mine precise specifications,

our previous work [3] proposed an approach, called

CAR-Miner, that mines sequence association rules of the

form: “FC1

c
...FCn

c
FCa ⇒ FC1

e
...FCm

e
”. This sequence

association rule describes that function call FCa should

be followed by function-call sequence FC1

e
...FCm

e
in

exception paths only when preceded by function-call

sequence FC1

c
...FCn

c
. Using this sequence association rule,

the preceding example can be expressed as “FC
1

c
FC

2

c

FCa ⇒ FC1

e
”, where

FC1

c
: OracleDataSource.getConnection

FC2

c
: Connection.createStatement

FCa : Statement.executeUpdate

FC1

e
: Connection.rollback

Then this sequence association rule applies to only the

code example in Figure 1 and does not apply to the

code example in Figure 3 due to the presence of FCa:

Statement.executeUpdate in the rule, causing no false

warning of rule violation. In our previous work, we use these

rules as inputs for a static verification tool and then apply

the tool to detect violations of these rules.

III. SPECIFYING AND MINING PRECISE “EXCEPTIONAL”

SPECIFICATIONS

Expected exception-handling rules may often need to

capture alternative patterns, originally introduced in our

previous Alattin approach [4]. In our Alattin approach, we

introduced alternative patterns to capture necessary condition

checks that should be performed before invoking an API

function call or after invoking an API function call. The

primary reason for the existence of alternative patterns is that

developers write source code in different ways to achieve the

same programming task. In addition, some of these ways



are more frequent compared to others, which may be just

minority (i.e., “exceptional”) ways.

Such alternative patterns also apply for exception-

handling rules. For example, consider the code example

shown in Figure 1. An exception-handling rule associated

with handling file writing can be expressed as “FC1

c
FCa

⇒ FC1

e
”, where

FC1

c
: FileWriter.constructor

FCa : BufferedWriter.constructor

FC1

e
: BufferedWriter.close

However, an alternative way for closing the file handle is

to invoke the close method on the FileWriter instance,

expressed as “FC1

c
FCa ⇒ FC2

e
”, where

FC1

c
: FileWriter.constructor

FCa : BufferedWriter.constructor

FC2

e
: FileWriter.close

Therefore, the complete rule can be captured as an

alternative rule as “FC1

c
FCa ⇒ FC1

e
∨ FC2

e
”, where

FC1

c
: FileWriter.constructor

FCa : BufferedWriter.constructor

FC1

e
: BufferedWriter.close

FC
2

e
: FileWriter.close

IV. CONCLUSION

To produce high-quality programs, developers are ex-

pected to handle exception conditions and take neces-

sary recovery actions or resource-releasing actions. Failing

to handle these exception conditions can lead to perfor-

mance degradation or critical issues. After formal exception-

handling specifications are written, program code can be

automatically analyzed to detect specification violations.

However, in practice, developers rarely write formal speci-

fications. To address this issue, our previous work [3], [4]

mines common exception-handling behavior out of program

code as exception-handling specifications. Our key insight

is that expected exception-handling behavior (1) may be

“conditional”, captured as sequence association rules [3],

or (2) may need to accommodate “exceptional” cases, cap-

tured as alternative patterns [4]. We expect that sequence

association rules along with alternative patterns could ef-

fectively help in precisely capturing expected exception-

handling behavior. In future work, we plan to empirically

study precise specifications for exception-handling behavior

by conducting characteristic studies of exception-handling

behavior documented in API documentation [9].

ACKNOWLEDGMENTS

This work is supported in part by NSF grants CCF-

0845272, CCF-0915400, CNS-0958235, and ARO grant

W911NF-08-1-0443.

REFERENCES

[1] T. C. Lethbridge, J. Singer, and A. Forward. How software
engineers use documentation: The state of the practice. IEEE
Software, 20(6):35–39, November 2003.

[2] H. Shah, C. Görg, and M. J. Harrold. Why do developers ne-
glect exception handling? In Proc. 4th International Workshop
on Exception Handling (WEH 2008), pages 62–68, 2008.

[3] S. Thummalapenta and T. Xie. Mining exception-handling
rules as sequence association rules. In Proc. 31st International
Conference on Software Engineering (ICSE 2009), pages 496–
506, 2009.

[4] S. Thummalapenta and T. Xie. Alattin: mining alternative
patterns for defect detection. Automated Software Engineering,
18(3-4):293–323, 2011.

[5] S. Thummalapenta, T. Xie, and M. R. Marri. Mining API
usage specifications via searching source code from the web.
In D. Lo, S.-C. Khoo, J. Han, and C. Liu, editors, Mining Soft-
ware Specifications: Methodologies and Applications. Taylor &
Francis, 2011.

[6] W. Weimer and G. Necula. Mining temporal specifications
for error detection. In Proc. 11th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2005), pages 461–476, 2005.

[7] W. Weimer and G. C. Necula. Finding and preventing run-
time error handling mistakes. In Proc. 19th annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2004), pages 419–431,
2004.

[8] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data mining for
software engineering. IEEE Computer, 42(8):35–42, August
2009.

[9] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
Proc. 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2009), pages 307–318, 2009.


